ORB-SLAM2学习笔记6之D435i双目IR相机运行ROS版ORB-SLAM2并发布位姿pose的rostopic

news2024/11/15 8:02:07

文章目录

  • 0 引言
  • 1 D435i相机配置
  • 2 新增发布双目位姿功能
    • 2.1 新增d435i_stereo.cc代码
    • 2.2 修改CMakeLists.txt
    • 2.3 新增配置文件D435i.yaml
  • 3 编译运行和结果
    • 3.1 编译运行
    • 3.2 结果
    • 3.3 可能出现的问题

0 引言

ORB-SLAM2学习笔记1已成功编译安装ROS版本ORB-SLAM2到本地,以及ORB-SLAM2学习笔记5成功用EuRoc、TUM、KITTI开源数据来运行ROSORB-SLAM2,并生成轨迹。但实际ROS视觉SLAM工程落地时,一般搭配传感器实时发出位姿poserostopic,本篇就以D435i相机的双目IR相机作为输入,运行ROSORB-SLAM2,最后发出poserostopic

👉 ORB-SLAM2 github: https://github.com/raulmur/ORB_SLAM2

本文系统环境:

  • Ubuntu18.04
  • ROS-melodic
  • ROS版ORB-SLAM2
  • D435i相机和驱动

1 D435i相机配置

默认已在Ubuntu18.04系统上安装ROS版的D435i相机驱动,比如本文驱动安装目录~/catkin_rs/src/realsense-ros

安装后,默认是不开双目IR相机,需要自行修改配置:

# 激活环境
source /catkin_rs/devel/setup.bash
# roscd 进入到配置文件目录下
roscd realsense2_camera/launch/
# 打开 rs_camera.launch 配置文件进行修改
vim rs_camera.launch

打开后,主要是如下的字段需要修改成 true,这样就能打开双目IR相机,分辨率也可自行修改。

  <arg name="infra_width"         default="848"/>
  <arg name="infra_height"        default="480"/>
  <arg name="enable_infra"        default="true"/>
  <arg name="enable_infra1"       default="true"/>
  <arg name="enable_infra2"       default="true"/>
...

2 新增发布双目位姿功能

2.1 新增d435i_stereo.cc代码

ORB_SLAM2/Examples/ROS/ORB_SLAM2/src/目录下新增d435i_stereo.cc 代码文件,如下代码片段来增加:

#include<iostream>
#include<algorithm>
#include<fstream>
#include<chrono>

#include<tf/transform_broadcaster.h>
#include "../../../include/Converter.h"
#include <nav_msgs/Path.h>

#include <ros/ros.h>
#include <cv_bridge/cv_bridge.h>
#include <message_filters/subscriber.h>
#include <message_filters/time_synchronizer.h>
#include <message_filters/sync_policies/approximate_time.h>

#include<opencv2/core/core.hpp>

#include"../../../include/System.h"

using namespace std;

class ImageGrabber
{
public:
    ImageGrabber(ORB_SLAM2::System* pSLAM):mpSLAM(pSLAM){}

    void GrabStereo(const sensor_msgs::ImageConstPtr& msgLeft,const sensor_msgs::ImageConstPtr& msgRight);

    ORB_SLAM2::System* mpSLAM;
    bool do_rectify;
    cv::Mat M1l,M2l,M1r,M2r;
};

ros::Publisher pose_pub;
nav_msgs::Path stereo_path;
ros::Publisher stereo_path_pub;

int main(int argc, char **argv)
{
    ros::init(argc, argv, "RGBD");
    ros::start();

    if(argc != 4)
    {
        cerr << endl << "Usage: rosrun ORB_SLAM2 Stereo path_to_vocabulary path_to_settings do_rectify" << endl;
        ros::shutdown();
        return 1;
    }    

    // Create SLAM system. It initializes all system threads and gets ready to process frames.
    ORB_SLAM2::System SLAM(argv[1],argv[2],ORB_SLAM2::System::STEREO,true);

    ImageGrabber igb(&SLAM);

    stringstream ss(argv[3]);
	ss >> boolalpha >> igb.do_rectify;

    if(igb.do_rectify)
    {      
        // Load settings related to stereo calibration
        cv::FileStorage fsSettings(argv[2], cv::FileStorage::READ);
        if(!fsSettings.isOpened())
        {
            cerr << "ERROR: Wrong path to settings" << endl;
            return -1;
        }

        cv::Mat K_l, K_r, P_l, P_r, R_l, R_r, D_l, D_r;
        fsSettings["LEFT.K"] >> K_l;
        fsSettings["RIGHT.K"] >> K_r;

        fsSettings["LEFT.P"] >> P_l;
        fsSettings["RIGHT.P"] >> P_r;

        fsSettings["LEFT.R"] >> R_l;
        fsSettings["RIGHT.R"] >> R_r;

        fsSettings["LEFT.D"] >> D_l;
        fsSettings["RIGHT.D"] >> D_r;

        int rows_l = fsSettings["LEFT.height"];
        int cols_l = fsSettings["LEFT.width"];
        int rows_r = fsSettings["RIGHT.height"];
        int cols_r = fsSettings["RIGHT.width"];

        if(K_l.empty() || K_r.empty() || P_l.empty() || P_r.empty() || R_l.empty() || R_r.empty() || D_l.empty() || D_r.empty() ||
                rows_l==0 || rows_r==0 || cols_l==0 || cols_r==0)
        {
            cerr << "ERROR: Calibration parameters to rectify stereo are missing!" << endl;
            return -1;
        }

        cv::initUndistortRectifyMap(K_l,D_l,R_l,P_l.rowRange(0,3).colRange(0,3),cv::Size(cols_l,rows_l),CV_32F,igb.M1l,igb.M2l);
        cv::initUndistortRectifyMap(K_r,D_r,R_r,P_r.rowRange(0,3).colRange(0,3),cv::Size(cols_r,rows_r),CV_32F,igb.M1r,igb.M2r);
    }

    ros::NodeHandle nh;

    //message_filters::Subscriber<sensor_msgs::Image> left_sub(nh, "/camera/left/image_raw", 1);
    //message_filters::Subscriber<sensor_msgs::Image> right_sub(nh, "camera/right/image_raw", 1);
    message_filters::Subscriber<sensor_msgs::Image> left_sub(nh, "/camera/infra1/image_rect_raw", 1);
    message_filters::Subscriber<sensor_msgs::Image> right_sub(nh, "/camera/infra2/image_rect_raw", 1);
    typedef message_filters::sync_policies::ApproximateTime<sensor_msgs::Image, sensor_msgs::Image> sync_pol;
    message_filters::Synchronizer<sync_pol> sync(sync_pol(10), left_sub,right_sub);
    sync.registerCallback(boost::bind(&ImageGrabber::GrabStereo,&igb,_1,_2));
    pose_pub = nh.advertise<geometry_msgs::PoseStamped>("ORB_SLAM/pose", 5);

    stereo_path_pub = nh.advertise<nav_msgs::Path>("ORB_SLAM/path",10);


    ros::spin();
    // Stop all threads
    SLAM.Shutdown();

    // Save camera trajectory
    SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory_TUM_Format.txt");
    SLAM.SaveTrajectoryTUM("FrameTrajectory_TUM_Format.txt");
    SLAM.SaveTrajectoryKITTI("FrameTrajectory_KITTI_Format.txt");

    ros::shutdown();

    return 0;
}

void ImageGrabber::GrabStereo(const sensor_msgs::ImageConstPtr& msgLeft,const sensor_msgs::ImageConstPtr& msgRight)
{
    // Copy the ros image message to cv::Mat.
    cv_bridge::CvImageConstPtr cv_ptrLeft;
    try
    {
        cv_ptrLeft = cv_bridge::toCvShare(msgLeft);
    }
    catch (cv_bridge::Exception& e)
    {
        ROS_ERROR("cv_bridge exception: %s", e.what());
        return;
    }

    cv_bridge::CvImageConstPtr cv_ptrRight;
    try
    {
        cv_ptrRight = cv_bridge::toCvShare(msgRight);
    }
    catch (cv_bridge::Exception& e)
    {
        ROS_ERROR("cv_bridge exception: %s", e.what());
        return;
    }

    if(do_rectify)
    {
        cv::Mat imLeft, imRight;
        cv::remap(cv_ptrLeft->image,imLeft,M1l,M2l,cv::INTER_LINEAR);
        cv::remap(cv_ptrRight->image,imRight,M1r,M2r,cv::INTER_LINEAR);
        mpSLAM->TrackStereo(imLeft,imRight,cv_ptrLeft->header.stamp.toSec()).clone();

    }
    else
    {
        cv::Mat Tcw;
        Tcw = mpSLAM->TrackStereo(cv_ptrLeft->image,cv_ptrRight->image,cv_ptrLeft->header.stamp.toSec());

        geometry_msgs::PoseStamped pose;
        pose.header.stamp = ros::Time::now();
        pose.header.frame_id ="path";

        cv::Mat Rwc = Tcw.rowRange(0,3).colRange(0,3).t(); // Rotation information
        cv::Mat twc = -Rwc*Tcw.rowRange(0,3).col(3); // translation information
        vector<float> q = ORB_SLAM2::Converter::toQuaternion(Rwc);

        tf::Transform new_transform;
        new_transform.setOrigin(tf::Vector3(twc.at<float>(0, 0), twc.at<float>(0, 1), twc.at<float>(0, 2)));
        tf::Quaternion quaternion(q[0], q[1], q[2], q[3]);
        new_transform.setRotation(quaternion);
        tf::poseTFToMsg(new_transform, pose.pose);
        pose_pub.publish(pose);
        
        stereo_path.header.frame_id="path";
        stereo_path.header.stamp=ros::Time::now();
        stereo_path.poses.push_back(pose);
        stereo_path_pub.publish(stereo_path);

    }
}

上述代码已经写入了D435i相机双目IR相机发出的topic,分别是左目/camera/infra1/image_rect_raw,右目/camera/infra2/image_rect_raw;发布的位姿posetopicORB_SLAM/pose,如果用的不是D435i,比如zed双目相机,可以自行修改。

2.2 修改CMakeLists.txt

由于新增了发布功能的代码文件,那对应的CMakeLists.txt也需要新增对应的编译和链接的设置,如下所示,在ORB_SLAM2/Examples/ROS/ORB_SLAM2/CMakeLists.txt 文件的结尾新增:

# Node for d435i_stereo camera
# 设置了编译的代码文件`d435i_stereo.cc`和可执行文件的名字
rosbuild_add_executable(D435i_Stereo
src/d435i_stereo.cc
)

target_link_libraries(D435i_Stereo
${LIBS}
)

2.3 新增配置文件D435i.yaml

同时也要新增对应的配置文件D435i.yaml,可新增到ORB_SLAM2/Examples/Stereo/D435i.yaml,文件类似ORB_SLAM2/Examples/Stereo/EuRoC.yaml,如下所示,主要修改第一部分的内参部分(fx,fy,cx,cy)即可,相机的内参获取方法,可通过roslaunch realsense2_camera rs_camera.launch启动相机后,再通过rostopic echo /camera/infra1/camera_info来获取。

%YAML:1.0

#--------------------------------------------------------------------------------------------
# Camera Parameters. Adjust them!
#--------------------------------------------------------------------------------------------

# Camera calibration and distortion parameters (OpenCV) 
Camera.fx: 427.03680419921875
Camera.fy: 427.03680419921875
Camera.cx: 427.3993835449219
Camera.cy: 236.4639129638672

Camera.k1: 0.0
Camera.k2: 0.0
Camera.p1: 0.0
Camera.p2: 0.0

Camera.width: 848
Camera.height: 480

# Camera frames per second 
Camera.fps: 15.0

# stereo baseline times fx
Camera.bf: 50.0

# Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)
Camera.RGB: 1

# Close/Far threshold. Baseline times.
ThDepth: 35

#--------------------------------------------------------------------------------------------
# Stereo Rectification. Only if you need to pre-rectify the images.
# Camera.fx, .fy, etc must be the same as in LEFT.P
#--------------------------------------------------------------------------------------------
LEFT.height: 480
LEFT.width: 752
LEFT.D: !!opencv-matrix
   rows: 1
   cols: 5
   dt: d
   data:[-0.28340811, 0.07395907, 0.00019359, 1.76187114e-05, 0.0]
LEFT.K: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [458.654, 0.0, 367.215, 0.0, 457.296, 248.375, 0.0, 0.0, 1.0]
LEFT.R:  !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [0.999966347530033, -0.001422739138722922, 0.008079580483432283, 0.001365741834644127, 0.9999741760894847, 0.007055629199258132, -0.008089410156878961, -0.007044357138835809, 0.9999424675829176]
LEFT.P:  !!opencv-matrix
   rows: 3
   cols: 4
   dt: d
   data: [435.2046959714599, 0, 367.4517211914062, 0,  0, 435.2046959714599, 252.2008514404297, 0,  0, 0, 1, 0]

RIGHT.height: 480
RIGHT.width: 752
RIGHT.D: !!opencv-matrix
   rows: 1
   cols: 5
   dt: d
   data:[-0.28368365, 0.07451284, -0.00010473, -3.555907e-05, 0.0]
RIGHT.K: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [457.587, 0.0, 379.999, 0.0, 456.134, 255.238, 0.0, 0.0, 1]
RIGHT.R:  !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [0.9999633526194376, -0.003625811871560086, 0.007755443660172947, 0.003680398547259526, 0.9999684752771629, -0.007035845251224894, -0.007729688520722713, 0.007064130529506649, 0.999945173484644]
RIGHT.P:  !!opencv-matrix
   rows: 3
   cols: 4
   dt: d
   data: [435.2046959714599, 0, 367.4517211914062, -47.90639384423901, 0, 435.2046959714599, 252.2008514404297, 0, 0, 0, 1, 0]

#--------------------------------------------------------------------------------------------
# ORB Parameters
#--------------------------------------------------------------------------------------------

# ORB Extractor: Number of features per image
ORBextractor.nFeatures: 1200

# ORB Extractor: Scale factor between levels in the scale pyramid 	
ORBextractor.scaleFactor: 1.2

# ORB Extractor: Number of levels in the scale pyramid	
ORBextractor.nLevels: 8

# ORB Extractor: Fast threshold
# Image is divided in a grid. At each cell FAST are extracted imposing a minimum response.
# Firstly we impose iniThFAST. If no corners are detected we impose a lower value minThFAST
# You can lower these values if your images have low contrast			
ORBextractor.iniThFAST: 20
ORBextractor.minThFAST: 7

#--------------------------------------------------------------------------------------------
# Viewer Parameters
#--------------------------------------------------------------------------------------------
Viewer.KeyFrameSize: 0.05
Viewer.KeyFrameLineWidth: 1
Viewer.GraphLineWidth: 0.9
Viewer.PointSize:2
Viewer.CameraSize: 0.08
Viewer.CameraLineWidth: 3
Viewer.ViewpointX: 0
Viewer.ViewpointY: -0.7
Viewer.ViewpointZ: -1.8
Viewer.ViewpointF: 500

3 编译运行和结果

3.1 编译运行

全部修改后,可回到ORB_SLAM2工程目录下,重新执行命令进行编译:

# chmod 之前执行过可忽略
chmod +x build_ros.sh
./build_ros.sh

编译完成后,首先连接D435i相机到电脑上(USB3.0),然后执行命令启动D435i相机:

source /catkin_rs/devel/setup.bash
roslaunch realsense2_camera rs_camera.launch

然后再新开终端,执行D435i_Stereo

# ORB_SLAM2工程目录下
rosrun ORB_SLAM2 D435i_Stereo Vocabulary/ORBvoc.txt Examples/Stereo/D435i.yaml false

3.2 结果

执行上述命令后,在加载完词袋后,会自动打开两个可视化界面:

ORB-SLAM2: Current Frame
请添加图片描述

ORB-SLAM2: Map Viewer
请添加图片描述

可以用rostopic list可查看到已经发出的位姿topic :

/ORB_SLAM/path
/ORB_SLAM/pose

也可以用rostopic echo /ORB_SLAM/pose查看具体的位姿信息:

header: 
  seq: 3287
  stamp: 
    secs: 0
    nsecs:         0
  frame_id: "path"
pose: 
  position: 
    x: 0.0335485860705
    y: -0.0102641582489
    z: -0.0411500893533
  orientation: 
    x: -0.042415473676
    y: -0.00852415898276
    z: -0.015283392766
    w: 0.998946787478

至此,成功用D435i相机的双目IR相机作为输入,运行ROSORB-SLAM2,最后发出poserostopic

3.3 可能出现的问题

问题1:

如果如下所示的问题,启动后很快自动关闭,可能是特征点太少的原因,调整相机的朝向,保证相机视野范围内多一点特征:

terminate called after throwing an instance of 'cv::Exception'
  what():  /build/opencv-L2vuMj/opencv-3.2.0+dfsg/modules/core/src/matrix.cpp:483: error: (-215) 0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows in function Mat

Aborted (core dumped)

Reference:

  • https://github.com/raulmur/ORB_SLAM2



须知少时凌云志,曾许人间第一流。



⭐️👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍🌔

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/834399.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++入门篇6 C++的内存管理

在学习C的内存管理之前&#xff0c;我们先来回顾一下C语言中动态内存 int main() {int* p1 (int*)malloc(sizeof(int));free(p1);// 1.malloc/calloc/realloc的区别是什么&#xff1f;int* p2 (int*)calloc(4, sizeof(int));//calloc 可以初始化空间为0int* p3 (int*)reall…

渗透-01:DNS原理和HTML字符编码-HTML实体编码

一、DNS概念 DNS (Domain Name System 的缩写)就是根据域名查出IP地址(常用) DNS分类&#xff1a; 正向解析&#xff1a;已知域名解析IP反向解析&#xff1a;已知IP解析对应的域名 二、查询过程 工具软件dig可以显示整个查询过程 [rootnode01 ~]# dig baidu.com; <<>&…

pytorch学习——卷积神经网络——以LeNet为例

目录 一.什么是卷积&#xff1f; 二.卷积神经网络的组成 三.卷积网络基本元素介绍 3.1卷积 3.2填充和步幅 3.2.1填充&#xff08;Padding&#xff09; 填充是指在输入数据周围添加额外的边界值&#xff08;通常是零&#xff09;&#xff0c;以扩展输入的尺寸。填充可以在卷…

重磅特性 - SpreadJS推出新插件甘特图,预览版下载体验中

摘要&#xff1a;本文由葡萄城技术团队于CSDN原创并首发。转载请注明出处&#xff1a;葡萄城官网&#xff0c;葡萄城为开发者提供专业的开发工具、解决方案和服务&#xff0c;赋能开发者。 甘特图对于业务场景中的工程项目管理、预算执行、生产计划等都能将原有的表格数据&…

【数据分析】numpy (二)

numpy作为数据分析&#xff0c;深度学习常用的库&#xff0c;本篇博客我们来介绍numpy的一些进阶用法&#xff1a; 一&#xff0c;numpy的常用简单内置函数&#xff1a; 1.1求和&#xff1a; a np.array([[1, 2],[3, 4]]) np.sum(a)10 1.2求平均值&#xff1a; np.mean(a…

《向量数据库》——怎么安装向量检索库Faiss?

装 Faiss 以下教程将展示如何在 Linux 系统上安装 Faiss: 1. 安装 Conda。 在安装 Faiss 之前,先在系统上安装 Conda。Conda 是一个开源软件包和环境管理系统,可在 Windows、macOS 和 Linux 操作系统上运行。根据以下步骤在 Linux 系统上安装 Conda。 2. 从官网…

[模拟电路]集成运算放大器

目录 一.前言二.集成运放的介绍及特性分析1.集成运算放大器2.集成运放由四个部分组成3.集成运放的特性 三.集成运放的线性应用&#xff08;引入负反馈&#xff09;1.两个基本运算电路——反相/同相比例运算电路2.同相比例运算电路的特例——电压跟随器3.反相加法运算电路4.同相…

Android组件化入门:一步步搭建组件化架构

1、前言 最近因为业务需求变更&#xff0c;有考虑采用组件化架构进行开发&#xff0c;这方面我之前没有接触过。关于组件化的文章很多&#xff0c;各方大神更是提出了各种的组件化方案&#xff0c;我也看了很多相关文章。但是学习新东西看的再多&#xff0c;不如动手做一次&am…

CAD产品设计逆向软件 FARO RevEng Crack

CAD产品设计逆向软件 FARO RevEng 软件平台能为用户带来全面的数字设计体验。该反向工程软件有助于利用三维点云创建和编辑高质量的网格和 CAD 表面&#xff0c;以实现反向工程工作流程。然后&#xff0c;工业设计师可以利用这些网格模型进行进一步设计或三维打印。 RevEng 的商…

element-ui分页编辑器的使用

代码&#xff1a; 准备好初始数据; total: ,page: {pageSize: 1,pageNumber: 10,}, 当前显示在第一页,每页10条数据。 一,页码改变的事件 handleCurrentChange(val) { this.page.pageSizeval 通过传入(this.page) 获取当前页的数据 } 二.页容量改变 handleSizeChange(val) …

剑指offer49.丑数

看完题想了一下&#xff0c;就想到了一点&#xff0c;它就是先用1分别乘2&#xff0c;乘3&#xff0c;乘5然后往后加&#xff0c;然后用2分别乘2&#xff0c;乘3&#xff0c;乘5往后加&#xff0c;但是如果这样就是1&#xff0c;2&#xff0c;3&#xff0c;5&#xff0c;4&…

更快的训练和推理: 对比 Habana Gaudi®2 和英伟达 A100 80GB

&#x1f917; 宝子们可以戳 阅读原文 查看文中所有的外部链接哟&#xff01; 通过本文&#xff0c;你将学习如何使用 Habana Gaudi2 加速模型训练和推理&#xff0c;以及如何使用 &#x1f917; Optimum Habana 训练更大的模型。然后&#xff0c;我们展示了几个基准测例&#…

春秋云镜 CVE-2020-5515

春秋云镜 CVE-2020-5515 Gila CMS 1.11.8 sql注入 靶标介绍 Gila CMS是一套基于PHP和MySQL的开源内容管理系统&#xff08;CMS&#xff09;。 Gila CMS 1.11.8版本中的/admin/sql?query存在SQL注入漏洞。该漏洞源于基于数据库的应用缺少对外部输入SQL语句的验证。攻击者可利…

【零基础学Rust | 基础系列 | 基础语法】变量,数据类型,运算符,控制流

文章目录 简介&#xff1a;一&#xff0c;变量1&#xff0c;变量的定义2&#xff0c;变量的可变性3&#xff0c;变量的隐藏 二、数据类型1&#xff0c;标量类型2&#xff0c;复合类型 三&#xff0c;运算符1&#xff0c;算术运算符2&#xff0c;比较运算符3&#xff0c;逻辑运算…

KVM+SAN 如何实现多个主机访问同一个卷组

KVMSAN存储 KVM宿主机的HBA卡通过光纤线 <-----> 光纤交换机 <-----> SAN存储 联想SAN存储&#xff1a; 1、创建卷组 可使用卷组来创建可供主机访问的一个或多个卷。卷组是具有共同特性&#xff08;如 RAID 级别和容量&#xff09;的卷的容器。 2、创建卷 可创…

vue el-input 使用 回车键会刷新页面的问题

场景&#xff1a; vue项目中 在输入框输入字符并按下回车键搜索时&#xff0c;不会进行搜索&#xff0c; 而是会刷新页面 原因&#xff1a; 当form表单中只有一个input时&#xff0c;按下回车建会自动触发页面的提交功能&#xff0c; 产生刷新页面的行为 解决&#xff1a; 在…

【Matlab】绘图代码模板

matlab绘图代码模板 matlab官方帮助文档平面基本绘图(2D):单曲线图多曲线图 官网模板单曲线图条形图误差条形图极坐标图针状图散点图3D等高线图热图 进阶版绘图好看的折线图柱状图统计直方图离散数据杆状图二维曲线二维散点图二维渐变图条形图填充图多Y轴图二维场图三维曲线图三…

“华为杯”研究生数学建模竞赛2016年-【华为杯】A题:多无人机协同任务规划

目录 摘 要&#xff1a; 1. 问题重述 1 . 1 问题背景 1 . 2 需要解决的问题 2. 模型的假设 3. 符号说明 4. 问题一&#xff08;协同侦察&#xff09; 4 . 1 问题分析及模型建立 4 . 2 问题求解 4.2.1 加载 S-1 型载荷的无人机的航迹优化 4.2.2 加载 S-2 型载荷的无人机的航迹优…

【java安全】无Commons-Collections的Shiro550反序列化利用

文章目录 【java安全】无Commons-Collections的Shiro550反序列化利用Shiro550利用的难点CommonsBeanutils1是否可以Shiro中&#xff1f;什么是serialVersionUID&#xff1f;W 无依赖的Shiro反序列化利用链POC 【java安全】无Commons-Collections的Shiro550反序列化利用 Shiro5…

【JMeter】 使用Synchronizing Timer设置请求集合点,实现绝对并发

目录 布局设置说明 Number of Simulated Users to Group Timeout in milliseconds 使用时需要注意的点 集合点作用域 实际运行 资料获取方法 布局设置说明 参数说明&#xff1a; Number of Simulated Users to Group 每次释放的线程数量。如果设置为0&#xff0c;等同…