深度学习Redis(4):哨兵

news2025/1/11 21:51:58

前言

在 Redis(3):主从复制 中曾提到,Redis主从复制的作用有数据热备、负载均衡、故障恢复等;但主从复制存在的一个问题是故障恢复无法自动化。本文将要介绍的哨兵,它基于Redis主从复制,主要作用便是解决主节点故障恢复的自动化问题,进一步提高系统的高可用性。

文章主要内容如下:首先介绍哨兵的作用和架构;然后讲述哨兵系统的部署方法,以及通过客户端访问哨兵系统的方法;然后简要说明哨兵实现的基本原理;最后给出关于哨兵实践的一些建议。文章内容基于Redis 3.0版本。

一、作用和架构

1.  作用

在介绍哨兵之前,首先从宏观角度回顾一下Redis实现高可用相关的技术。它们包括:持久化、复制、哨兵和集群,其主要作用和解决的问题是:

  • 持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
  • 复制:复制是高可用Redis的基础,哨兵和集群都是在复制基础上实现高可用的。复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
  • 哨兵:在复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
  • 集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

下面说回哨兵。

Redis Sentinel,即Redis哨兵,在Redis 2.8版本开始引入。哨兵的核心功能是主节点的自动故障转移。下面是Redis官方文档对于哨兵功能的描述:

  • 监控(Monitoring):哨兵会不断地检查主节点和从节点是否运作正常。
  • 自动故障转移(Automatic failover):当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其他从节点改为复制新的主节点。
  • 配置提供者(Configuration provider):客户端在初始化时,通过连接哨兵来获得当前Redis服务的主节点地址。
  • 通知(Notification):哨兵可以将故障转移的结果发送给客户端。

其中,监控和自动故障转移功能,使得哨兵可以及时发现主节点故障并完成转移;而配置提供者和通知功能,则需要在与客户端的交互中才能体现。

这里对“客户端”一词在文章中的用法做一个说明:在前面的文章中,只要通过API访问redis服务器,都会称作客户端,包括redis-cli、Java客户端Jedis等;为了便于区分说明,本文中的客户端并不包括redis-cli,而是比redis-cli更加复杂:redis-cli使用的是redis提供的底层接口,而客户端则对这些接口、功能进行了封装,以便充分利用哨兵的配置提供者和通知功能。

2.  架构

典型的哨兵架构图如下所示:

它由两部分组成,哨兵节点和数据节点:

  • 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
  • 数据节点:主节点和从节点都是数据节点。

二、部署

这一部分将部署一个简单的哨兵系统,包含1个主节点、2个从节点和3个哨兵节点。方便起见:所有这些节点都部署在一台机器上(局域网IP:192.168.92.128),使用端口号区分;节点的配置尽可能简化。

1.  部署主从节点

哨兵系统中的主从节点,与普通的主从节点配置是一样的,并不需要做任何额外配置。下面分别是主节点(port=6379)和2个从节点(port=6380/6381)的配置文件,配置都比较简单,不再详述。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#redis-6379.conf

port 6379

daemonize yes

logfile "6379.log"

dbfilename "dump-6379.rdb"

#redis-6380.conf

port 6380

daemonize yes

logfile "6380.log"

dbfilename "dump-6380.rdb"

slaveof 192.168.92.128 6379

#redis-6381.conf

port 6381

daemonize yes

logfile "6381.log"

dbfilename "dump-6381.rdb"

slaveof 192.168.92.128 6379

配置完成后,依次启动主节点和从节点:

1

2

3

redis-server redis-6379.conf

redis-server redis-6380.conf

redis-server redis-6381.conf

节点启动后,连接主节点查看主从状态是否正常,如下图所示:

2.  部署哨兵节点

哨兵节点本质上是特殊的Redis节点。

3个哨兵节点的配置几乎是完全一样的,主要区别在于端口号的不同(26379/26380/26381),下面以26379节点为例介绍节点的配置和启动方式;配置部分尽量简化,更多配置会在后面介绍。

1

2

3

4

5

#sentinel-26379.conf

port 26379

daemonize yes

logfile "26379.log"

sentinel monitor mymaster 192.168.92.128 6379 2

其中,sentinel monitor mymaster 192.168.92.128 6379 2 配置的含义是:该哨兵节点监控192.168.92.128:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移。

哨兵节点的启动有两种方式,二者作用是完全相同的:

1

2

redis-sentinel sentinel-26379.conf

redis-server sentinel-26379.conf --sentinel

按照上述方式配置和启动之后,整个哨兵系统就启动完毕了。可以通过redis-cli连接哨兵节点进行验证,如下图所示:可以看出26379哨兵节点已经在监控mymaster主节点(即192.168.92.128:6379),并发现了其2个从节点和另外2个哨兵节点。

此时如果查看哨兵节点的配置文件,会发现一些变化,以26379为例:

其中,dir只是显式声明了数据和日志所在的目录(在哨兵语境下只有日志);known-slave和known-sentinel显示哨兵已经发现了从节点和其他哨兵;带有epoch的参数与配置纪元有关(配置纪元是一个从0开始的计数器,每进行一次领导者哨兵选举,都会+1;领导者哨兵选举是故障转移阶段的一个操作,在后文原理部分会介绍)。

3.  演示故障转移

哨兵的4个作用中,配置提供者和通知需要客户端的配合,本文将在下一章介绍客户端访问哨兵系统的方法时详细介绍。这一小节将演示当主节点发生故障时,哨兵的监控和自动故障转移功能。

(1)首先,使用kill命令杀掉主节点:

(2)如果此时立即在哨兵节点中使用info Sentinel命令查看,会发现主节点还没有切换过来,因为哨兵发现主节点故障并转移,需要一段时间。

(3)一段时间以后,再次在哨兵节点中执行info Sentinel查看,发现主节点已经切换成6380节点。

但是同时可以发现,哨兵节点认为新的主节点仍然有2个从节点,这是因为哨兵在将6380切换成主节点的同时,将6379节点置为其从节点;虽然6379从节点已经挂掉,但是由于哨兵并不会对从节点进行客观下线(其含义将在原理部分介绍),因此认为该从节点一直存在。当6379节点重新启动后,会自动变成6380节点的从节点。下面验证一下。

(4)重启6379节点:可以看到6379节点成为了6380节点的从节点。

(5)在故障转移阶段,哨兵和主从节点的配置文件都会被改写。

对于主从节点,主要是slaveof配置的变化:新的主节点没有了slaveof配置,其从节点则slaveof新的主节点。

对于哨兵节点,除了主从节点信息的变化,纪元(epoch)也会变化,下图中可以看到纪元相关的参数都+1了。

4.  总结

哨兵系统的搭建过程,有几点需要注意:

(1)哨兵系统中的主从节点,与普通的主从节点并没有什么区别,故障发现和转移是由哨兵来控制和完成的。

(2)哨兵节点本质上是redis节点。

(3)每个哨兵节点,只需要配置监控主节点,便可以自动发现其他的哨兵节点和从节点。

(4)在哨兵节点启动和故障转移阶段,各个节点的配置文件会被重写(config rewrite)。

(5)本章的例子中,一个哨兵只监控了一个主节点;实际上,一个哨兵可以监控多个主节点,通过配置多条sentinel monitor即可实现。

三、客户端访问哨兵系统

上一小节演示了哨兵的两大作用:监控和自动故障转移,本小节则结合客户端演示哨兵的另外两个作用:配置提供者和通知。

1.  代码示例

在介绍客户端的原理之前,先以Java客户端Jedis为例,演示一下使用方法:下面代码可以连接我们刚刚搭建的哨兵系统,并进行各种读写操作(代码中只演示如何连接哨兵,异常处理、资源关闭等未考虑)。

1

2

3

4

5

6

7

8

9

10

11

12

public static void testSentinel() throws Exception {

         String masterName = "mymaster";

         Set<String> sentinels = new HashSet<>();

         sentinels.add("192.168.92.128:26379");

         sentinels.add("192.168.92.128:26380");

         sentinels.add("192.168.92.128:26381");

         JedisSentinelPool pool = new JedisSentinelPool(masterName, sentinels); //初始化过程做了很多工作

         Jedis jedis = pool.getResource();

         jedis.set("key1""value1");

         pool.close();

}

2.  客户端原理

Jedis客户端对哨兵提供了很好的支持。如上述代码所示,我们只需要向Jedis提供哨兵节点集合和masterName,构造JedisSentinelPool对象;然后便可以像使用普通redis连接池一样来使用了:通过pool.getResource()获取连接,执行具体的命令。

在整个过程中,我们的代码不需要显式的指定主节点的地址,就可以连接到主节点;代码中对故障转移没有任何体现,就可以在哨兵完成故障转移后自动的切换主节点。之所以可以做到这一点,是因为在JedisSentinelPool的构造器中,进行了相关的工作;主要包括以下两点:

(1)遍历哨兵节点,获取主节点信息:遍历哨兵节点,通过其中一个哨兵节点+masterName获得主节点的信息;该功能是通过调用哨兵节点的sentinel get-master-addr-by-name命令实现,该命令示例如下:

一旦获得主节点信息,停止遍历(因此一般来说遍历到第一个哨兵节点,循环就停止了)。

(2)增加对哨兵的监听:这样当发生故障转移时,客户端便可以收到哨兵的通知,从而完成主节点的切换。具体做法是:利用redis提供的发布订阅功能,为每一个哨兵节点开启一个单独的线程,订阅哨兵节点的+switch-master频道,当收到消息时,重新初始化连接池。

3.  总结

通过客户端原理的介绍,可以加深对哨兵功能的理解:

(1)配置提供者:客户端可以通过哨兵节点+masterName获取主节点信息,在这里哨兵起到的作用就是配置提供者。

需要注意的是,哨兵只是配置提供者,而不是代理。二者的区别在于:如果是配置提供者,客户端在通过哨兵获得主节点信息后,会直接建立到主节点的连接,后续的请求(如set/get)会直接发向主节点;如果是代理,客户端的每一次请求都会发向哨兵,哨兵再通过主节点处理请求。

举一个例子可以很好的理解哨兵的作用是配置提供者,而不是代理。在前面部署的哨兵系统中,将哨兵节点的配置文件进行如下修改:

1

2

3

sentinel monitor mymaster 192.168.92.128 6379 2

改为

sentinel monitor mymaster 127.0.0.1 6379 2

然后,将前述客户端代码在局域网的另外一台机器上运行,会发现客户端无法连接主节点;这是因为哨兵作为配置提供者,客户端通过它查询到主节点的地址为127.0.0.1:6379,客户端会向127.0.0.1:6379建立redis连接,自然无法连接。如果哨兵是代理,这个问题就不会出现了。

(2)通知:哨兵节点在故障转移完成后,会将新的主节点信息发送给客户端,以便客户端及时切换主节点。

四、基本原理

前面介绍了哨兵部署、使用的基本方法,本部分介绍哨兵实现的基本原理。

1.  哨兵节点支持的命令

哨兵节点作为运行在特殊模式下的redis节点,其支持的命令与普通的redis节点不同。在运维中,我们可以通过这些命令查询或修改哨兵系统;不过更重要的是,哨兵系统要实现故障发现、故障转移等各种功能,离不开哨兵节点之间的通信,而通信的很大一部分是通过哨兵节点支持的命令来实现的。下面介绍哨兵节点支持的主要命令。

(1)基础查询:通过这些命令,可以查询哨兵系统的拓扑结构、节点信息、配置信息等。

  • info sentinel:获取监控的所有主节点的基本信息
  • sentinel masters:获取监控的所有主节点的详细信息
  • sentinel master mymaster:获取监控的主节点mymaster的详细信息
  • sentinel slaves mymaster:获取监控的主节点mymaster的从节点的详细信息
  • sentinel sentinels mymaster:获取监控的主节点mymaster的哨兵节点的详细信息
  • sentinel get-master-addr-by-name mymaster:获取监控的主节点mymaster的地址信息,前文已有介绍
  • sentinel is-master-down-by-addr:哨兵节点之间可以通过该命令询问主节点是否下线,从而对是否客观下线做出判断

(2)增加/移除对主节点的监控

sentinel monitor mymaster2 192.168.92.128 16379 2:与部署哨兵节点时配置文件中的sentinel monitor功能完全一样,不再详述

sentinel remove mymaster2:取消当前哨兵节点对主节点mymaster2的监控

(3)强制故障转移

sentinel failover mymaster:该命令可以强制对mymaster执行故障转移,即便当前的主节点运行完好;例如,如果当前主节点所在机器即将报废,便可以提前通过failover命令进行故障转移。

2.  基本原理

关于哨兵的原理,关键是了解以下几个概念。

(1)定时任务:每个哨兵节点维护了3个定时任务。定时任务的功能分别如下:通过向主从节点发送info命令获取最新的主从结构;通过发布订阅功能获取其他哨兵节点的信息;通过向其他节点发送ping命令进行心跳检测,判断是否下线。

(2)主观下线:在心跳检测的定时任务中,如果其他节点超过一定时间没有回复,哨兵节点就会将其进行主观下线。顾名思义,主观下线的意思是一个哨兵节点“主观地”判断下线;与主观下线相对应的是客观下线。

(3)客观下线:哨兵节点在对主节点进行主观下线后,会通过sentinel is-master-down-by-addr命令询问其他哨兵节点该主节点的状态;如果判断主节点下线的哨兵数量达到一定数值,则对该主节点进行客观下线。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

(4)选举领导者哨兵节点:当主节点被判断客观下线以后,各个哨兵节点会进行协商,选举出一个领导者哨兵节点,并由该领导者节点对其进行故障转移操作。

监视该主节点的所有哨兵都有可能被选为领导者,选举使用的算法是Raft算法;Raft算法的基本思路是先到先得:即在一轮选举中,哨兵A向B发送成为领导者的申请,如果B没有同意过其他哨兵,则会同意A成为领导者。选举的具体过程这里不做详细描述,一般来说,哨兵选择的过程很快,谁先完成客观下线,一般就能成为领导者。

(5)故障转移:选举出的领导者哨兵,开始进行故障转移操作,该操作大体可以分为3个步骤:

  • 在从节点中选择新的主节点:选择的原则是,首先过滤掉不健康的从节点;然后选择优先级最高的从节点(由slave-priority指定);如果优先级无法区分,则选择复制偏移量最大的从节点;如果仍无法区分,则选择runid最小的从节点。
  • 更新主从状态:通过slaveof no one命令,让选出来的从节点成为主节点;并通过slaveof命令让其他节点成为其从节点。
  • 将已经下线的主节点(即6379)设置为新的主节点的从节点,当6379重新上线后,它会成为新的主节点的从节点。

通过上述几个关键概念,可以基本了解哨兵的工作原理。为了更形象的说明,下图展示了领导者哨兵节点的日志,包括从节点启动到完成故障转移。

五、配置与实践建议

1.  配置

下面介绍与哨兵相关的几个配置。

(1) sentinel monitor {masterName} {masterIp} {masterPort} {quorum}

sentinel monitor是哨兵最核心的配置,在前文讲述部署哨兵节点时已说明,其中:masterName指定了主节点名称,masterIp和masterPort指定了主节点地址,quorum是判断主节点客观下线的哨兵数量阈值:当判定主节点下线的哨兵数量达到quorum时,对主节点进行客观下线。建议取值为哨兵数量的一半加1。

(2) sentinel down-after-milliseconds {masterName} {time}

sentinel down-after-milliseconds与主观下线的判断有关:哨兵使用ping命令对其他节点进行心跳检测,如果其他节点超过down-after-milliseconds配置的时间没有回复,哨兵就会将其进行主观下线。该配置对主节点、从节点和哨兵节点的主观下线判定都有效。

down-after-milliseconds的默认值是30000,即30s;可以根据不同的网络环境和应用要求来调整:值越大,对主观下线的判定会越宽松,好处是误判的可能性小,坏处是故障发现和故障转移的时间变长,客户端等待的时间也会变长。例如,如果应用对可用性要求较高,则可以将值适当调小,当故障发生时尽快完成转移;如果网络环境相对较差,可以适当提高该阈值,避免频繁误判。

(3) sentinel parallel-syncs {masterName} {number}

sentinel parallel-syncs与故障转移之后从节点的复制有关:它规定了每次向新的主节点发起复制操作的从节点个数。例如,假设主节点切换完成之后,有3个从节点要向新的主节点发起复制;如果parallel-syncs=1,则从节点会一个一个开始复制;如果parallel-syncs=3,则3个从节点会一起开始复制。

parallel-syncs取值越大,从节点完成复制的时间越快,但是对主节点的网络负载、硬盘负载造成的压力也越大;应根据实际情况设置。例如,如果主节点的负载较低,而从节点对服务可用的要求较高,可以适量增加parallel-syncs取值。parallel-syncs的默认值是1。

(4) sentinel failover-timeout {masterName} {time}

sentinel failover-timeout与故障转移超时的判断有关,但是该参数不是用来判断整个故障转移阶段的超时,而是其几个子阶段的超时,例如如果主节点晋升从节点时间超过timeout,或从节点向新的主节点发起复制操作的时间(不包括复制数据的时间)超过timeout,都会导致故障转移超时失败。

failover-timeout的默认值是180000,即180s;如果超时,则下一次该值会变为原来的2倍。

(5)除上述几个参数外,还有一些其他参数,如安全验证相关的参数,这里不做介绍。

2.  实践建议

(1)哨兵节点的数量应不止一个,一方面增加哨兵节点的冗余,避免哨兵本身成为高可用的瓶颈;另一方面减少对下线的误判。此外,这些不同的哨兵节点应部署在不同的物理机上。

(2)哨兵节点的数量应该是奇数,便于哨兵通过投票做出“决策”:领导者选举的决策、客观下线的决策等。

(3)各个哨兵节点的配置应一致,包括硬件、参数等;此外,所有节点都应该使用ntp或类似服务,保证时间准确、一致。

(4)哨兵的配置提供者和通知客户端功能,需要客户端的支持才能实现,如前文所说的Jedis;如果开发者使用的库未提供相应支持,则可能需要开发者自己实现。

(5)当哨兵系统中的节点在docker(或其他可能进行端口映射的软件)中部署时,应特别注意端口映射可能会导致哨兵系统无法正常工作,因为哨兵的工作基于与其他节点的通信,而docker的端口映射可能导致哨兵无法连接到其他节点。例如,哨兵之间互相发现,依赖于它们对外宣称的IP和port,如果某个哨兵A部署在做了端口映射的docker中,那么其他哨兵使用A宣称的port无法连接到A。

六、总结

本文首先介绍了哨兵的作用:监控、故障转移、配置提供者和通知;然后讲述了哨兵系统的部署方法,以及通过客户端访问哨兵系统的方法;再然后简要说明了哨兵实现的基本原理;最后给出了关于哨兵实践的一些建议。

在主从复制的基础上,哨兵引入了主节点的自动故障转移,进一步提高了Redis的高可用性;但是哨兵的缺陷同样很明显:哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要我们对从节点做额外的监控、切换操作。

此外,哨兵仍然没有解决写操作无法负载均衡、及存储能力受到单机限制的问题;这些问题的解决需要使用集群,我将在后面的文章中介绍,欢迎关注。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/830920.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HET-1型多功能二维材料转移平台

HET-1型多功能二维材料转移平台 产品介绍 HET-1型二维转移平台适用于石墨烯、各类过渡金属化合物、黑磷等多种单层及其多层二维材料的精确定位转移及范德瓦尔斯异质结的准确制备&#xff0c;实现了低维材料转移的精确可视化操作。本套转移平台由转移台模块、样品台模块、显微观…

高性能API设计

背景 设计出一个高性能的API&#xff0c;需要综合网络、业务、数据库的优化。一下是我在实际的开发过程中总结的优化思想和一些效率提升的技巧。 批量思想 很多的数据库操作都含有batch或者bulk的api&#xff0c;如我最近常使用的mybatis、mybatis plus以及elastic Search的…

怎么让表格中的一行数据 转置 为一列数据 (WPS )

例如 我现在有一列数据 我想要 变成一行 数据 1.首先选中想要转置的数据&#xff0c;然后control C 2.接着 点击你想放置数据的位置 右键 其实 关键是 找到 选择性复制 3. 找到转置&#xff0c;勾选 最后 确定 反之亦然

GD32F103VET输出PWM波形

GD32F103VET将TIMER0_CH3映射到PE14引脚&#xff0c;使其输出PWM波形。测试时&#xff0c;使用示波器看PE14引脚输出的波形&#xff0c;效果更直观。 TIMER0之PWM输出引脚映射如下: TIMER0_REMAP[1:0]"00"(没有映射): TIMER0_CH0默认被映射到PA8引脚 TIMER0_CH1默认…

计算机网络 深入理解HTTPS协议证书

文章目录 一、HTTPS协议二、对称加密三、非对称加密&对称加密(混合加密)三、加密证书四、HTTPS双刃性 一、HTTPS协议 之前介绍了HTTP协议&#xff0c;它给我们带来很大便利&#xff0c;但是也能看到他的不足。由于其本身通信使用明文&#xff0c;没有进行加密&#xff0c;…

MATLAB /Simulink 快速开发STM32(使用st官方工具 STM32-MAT/TARGET),以及开发过程

配置好环境以后就是开发&#xff1a; stm32cube配置芯片&#xff0c;打开matlab添加ioc文件&#xff0c;写处理逻辑&#xff0c;生成代码&#xff0c;下载到板子中去。 配置需要注意事项&#xff1a; STM32CUBEMAX6.5.0 MABLAB2022BkeilV5.2 Matlab生成的代码CTRLB 其中关键的…

Apache RocketMQ 命令注入

漏洞简介 RocketMQ 5.1.0及以下版本&#xff0c;在一定条件下&#xff0c;存在远程命令执行风险。RocketMQ的NameServer、Broker、Controller等多个组件外网泄露&#xff0c;缺乏权限验证&#xff0c;攻击者可以利用该漏洞利用更新配置功能以RocketMQ运行的系统用户身份执行命令…

java+springboot+mysql个人日记管理系统

项目介绍&#xff1a; 使用javaspringbootmysql开发的个人日记管理系统&#xff0c;系统包含超级管理员、管理员、用户角色&#xff0c;功能如下&#xff1a; 超级管理员&#xff1a;管理员管理&#xff1b;用户管理&#xff1b;反馈管理&#xff1b;系统公告&#xff1b;个人…

银河麒麟V10 wireshark安装说明(断网离线)

下载离线安装包 链接&#xff1a;https://pan.baidu.com/s/11QFRmCGlIJrJaiKcHh9Hag?pwdu9wv 提取码&#xff1a;u9wv 安装步骤 tar zxvf wireshark.tar.gz cd wireshark sudo dpkt -i *.deb wireshark

关于CORS的笔记

CORS目录 一、SpringBoot 跨域设置二、CORS&#xff08;1&#xff09;总结的图如下&#xff08;2&#xff09;简单请求满足的条件&#xff08;3&#xff09;响应头&#xff08;4&#xff09;请求头&#xff08;5&#xff09;使用XMLHttpRequest进行跨域访问1. Access-Control-A…

html学习9(脚本)

1、<script>标签用于定义客户端脚本&#xff0c;比如JavaScript&#xff0c;既可包含脚本语句&#xff0c;也可通过src属性指向外部文件。 2、JavaScript最常用于图片操作、表单验证及内容动图更新。 3、<noscript>标签用于在浏览器禁用脚本或浏览器不支持脚本&a…

Java课题笔记~ 关联映射

一、MyBatis关联查询 在关系型数据库中&#xff0c;表与表之间存在着3种关联映射关系&#xff0c;分别为一对一、一对多、多对多。 一对一&#xff1a;一个数据表中的一条记录最多可以与另一个数据表中的一条记录相关。列如学生与学号就属于一对一关系。 一对多&#xff1a;主…

学习gRPC (三)

测试gRPC例子 编写proto文件实现服务端代码实现客户端代码 通过gRPC 已经编译并且安装好之后&#xff0c;就可以在源码目录下找到example 文件夹下来试用gRPC 提供的例子。 在这里我使用VS2022来打开仓库目录下example/cpp/helloworld目录 编写proto文件 下面是我改写的exa…

领域驱动设计(六) - 架构设计浅谈

单用一篇文章很难把这个主题描述的清楚&#xff0c;但为了系列的完整性&#xff0c;笔者会围绕DDD中所介绍的内容做下初步总结&#xff0c;使读者有一个连续性。 一、概述 现在不是局部解决问题的时代了要运用新的技术创造新的效率提升&#xff0c;需要整个商业链条一起前进。…

粉末治金液压系统伺服阀控制器

粉末冶金液压系统是一种应用于粉末治金工艺的液压系统。该系统由液压泵、压力调节器、液压缸、液压管道、电气控制系统等组成。 该系统的优点包括&#xff1a; 工艺动作可靠&#xff1a;粉末冶金液压系统能够精确控制压力和流量&#xff0c;保证工艺动作的可靠性。 提高生产…

分布式存储系统中一致性与可用性核心实战

《高并发系统实战派》-- 你值得拥有 文章目录 副本的喜与忧什么是一致性和可用性&#xff1f;一致性与可用性的较量如何有效权衡&#xff0c;提高系统性能和稳定性&#xff1f;带入实际场景场景案例CAP BASE 双轮指导CAP指导BASE指导 副本的喜与忧 我们要知道&#xff0c;无…

CSDN竞赛68期题解

总结 近几期的题目质量有所提升&#xff0c;数据范围还是一如既往的没给。对于算法题&#xff0c;给定详细的数据范围&#xff0c;规范输入输出&#xff0c;再多给出几个样例以及样例说明&#xff0c;参赛的体验感才会提升。 题目列表 1.小球游戏 题目描述 某台有10个小球的…

[Python] Pylance 插件打开 Python 的类型检查

安装 Python 插件 2.打开一个 Python 文件 可以看到右下角有一个花括号和 Python 字样&#xff0c;点击花括号&#xff08;不是 Python 字样&#xff09;打开类型检查即可&#xff1a;

【问题随记】

ubuntu 14.04源更新(sources.list) deb http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ trusty-security main restricted universe multiverse deb http://mirrors.aliyun.com/ubuntu/ trusty-update…

echart图表X轴文字太长被隐藏标签解决方案

在Echart图标中&#xff0c;X轴的标签文字间隔默认是自动计算的&#xff0c;在标签文字长度太长的情况下&#xff0c;有可能标签会被隐藏掉&#xff0c;如图 这种显示显然是不符合严谨的业务需求。以下提供三种解决方案 第一种&#xff1a;竖排显示 效果&#xff1a; 在高度一…