云环境中使用飞蛾火焰和萨尔普群算法组合的工作流调度(Matlab代码实现)

news2025/1/18 11:56:03

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

本文介绍了云环境中的工作流调度,并研究了具有不同数量异构虚拟机(VM)的不同服务器。为此,该文提出一种结合蛾焰优化(MFO)和Salp Swarm算法(SSA)的多目标工作流调度方法,提出一种具有不同目标(制造时间、吞吐量、资源利用率和可靠性)的MFSSA方法。MFSSA算法的主要目标是根据目标函数的最小化找到最优的服务器和虚拟机,从而为每个工作流任务获得最佳虚拟机。

📚2 运行结果

部分代码:

%Define problem parameters
search_agents_number=50; % Number of search agents
maxLoop=100; % Maximum numbef of iterations
%-------------------------------------------------------------------------%
% MIPS (Millions of Instructions Per Second)
% Expect Complete Time (ECT) 
% A cloud server(Node) can execute several separate VM samples, and each VM sample includes various resources such as CPU and memory
% the CPU (cpu_i (t)) and memory (mem_i (t))) usage of the cloud server are between [0, 100], i.e.  0鈮pu_i (t), mem_i (t)鈮�100
% ECT (k,j) represents the expected time of execution of task T(k,1) on vm(:, j)

Node1=randi([0 100],2,3);%vm1, vm2, vm3----> each vm incloud 2 feature(cpu capacity(mips), memory)...0鈮pu_i (t), mem_i (t)鈮�100
Node2=randi([0 100],2,4);%vm1, vm2, vm3, vm4----> each vm incloud 2 feature(cpu capacity(mips), memory)...0鈮pu_i (t), mem_i (t)鈮�100
Node3=randi([0 100],2,5);%vm1, vm2, vm3, vm4, vm5----> each vm incloud 2 feature(cpu capacity(mips), memory)...0鈮pu_i (t), mem_i (t)鈮�100
Node4=randi([0 100],2,6);%vm1, vm2, vm3, vm4, vm5, vm6, vm7----> each vm incloud 2 feature(cpu capacity(mips), memory)...0鈮pu_i (t), mem_i (t)鈮�100
Node5=randi([0 100],2,8);
Node6=randi([0 100],2,10);
Node7=randi([0 100],2,9);
Node8=randi([0 100],2,12);
%-------------------------------------------------------------------------%
failure_Rate1 = [9e-5, 7e-5, 8e-5, 6e-5, 5e-5, 6e-5]; %failure_Rate of each processor(deadline failure rate of the tasks at time t)
num_core = [15, 10, 15, 20, 25, 20]; %number of cores

for jj=1:size(Node1, 2)
    s=randi(size(failure_Rate1, 2));
    Node1(3, jj)=failure_Rate1(1, s);
    Node1(4, jj)=num_core(1, s);%number of cores
    Node1(5, jj)=num_core(1, s)*Node1(2, jj);% capacity of the VM instance
end

for jj=1:size(Node2, 2)
    s=randi(size(failure_Rate1, 2));
    Node2(3, jj)=failure_Rate1(1, s);
    Node2(4, jj)=num_core(1, s);
    Node2(5, jj)=num_core(1, s)*Node2(2, jj);% capacity of the VM instance
end

for jj=1:size(Node3, 2)
    s=randi(size(failure_Rate1, 2));
    Node3(3, jj)=failure_Rate1(1, s);
    Node3(4, jj)=num_core(1, s);
    Node3(5, jj)=num_core(1, s)*Node3(2, jj);% capacity of the VM instance
end

for jj=1:size(Node4, 2)
    s=randi(size(failure_Rate1, 2));
    Node4(3, jj)=failure_Rate1(1, s);
    Node4(4, jj)=num_core(1, s);
    Node4(5, jj)=num_core(1, s)*Node4(2, jj);% capacity of the VM instance
end

for jj=1:size(Node5, 2)
    s=randi(size(failure_Rate1, 2));
    Node5(3, jj)=failure_Rate1(1, s);
    Node5(4, jj)=num_core(1, s);
    Node5(5, jj)=num_core(1, s)*Node5(2, jj);% capacity of the VM instance
end

for jj=1:size(Node6, 2)
    s=randi(size(failure_Rate1, 2));
    Node6(3, jj)=failure_Rate1(1, s);
    Node6(4, jj)=num_core(1, s);
    Node6(5, jj)=num_core(1, s)*Node6(2, jj);% capacity of the VM instance
end

for jj=1:size(Node7, 2)
    s=randi(size(failure_Rate1, 2));
    Node7(3, jj)=failure_Rate1(1, s);
    Node7(4, jj)=num_core(1, s);
    Node7(5, jj)=num_core(1, s)*Node7(2, jj);% capacity of the VM instance
end

for jj=1:size(Node8, 2)
    s=randi(size(failure_Rate1, 2));
    Node8(3, jj)=failure_Rate1(1, s);
    Node8(4, jj)=num_core(1, s);
    Node8(5, jj)=num_core(1, s)*Node8(2, jj);% capacity of the VM instance
end
% save vm_info.mat Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8;
%=========================================================================%
total_Node={Node1, Node2, Node3, Node4, Node5, Node6, Node7, Node8};
%=========================================================================%
total_vm=zeros(size(Node1, 1), size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+size(Node7, 2)+size(Node8, 2));

total_vm(:, 1:size(Node1, 2))=Node1(:, :);
total_vm(:, size(Node1, 2)+1:size(Node1, 2)+size(Node2, 2))=Node2(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2))=Node3(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2))=Node4(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2))=Node5(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2))=Node6(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+size(Node7, 2))=Node7(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+size(Node7, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+size(Node7, 2)+size(Node8, 2))=Node8(:, :);
%=========================================================================%
% DAG
job_uses=row(:, 22); %task size
child_ref=text(:, 23);
child_parent=text(:, 24);

% child_parent1=child_parent;
% child_ref1=child_ref;
% index1 = find(contains(child_parent, 'ID00000'));
% index2 = find(contains(child_ref, 'ID00000'));

for jj=2:size(child_parent, 1)
    job_uses1(jj, 1)=cell2mat(job_uses(jj, 1));
end

B1=unique(child_parent);% hazf anasor tekrari
B2=unique(child_ref);
ff=zeros(size(B1, 1), size(B1, 1));

for k1=2:size(B1, 1)-1
    for k2=2:size(B2, 1)-1
    
    aa = find(contains(child_parent, B1(k1)));
    
    for i3=1:size(aa, 1)
        m1=child_ref(aa(i3, 1), 1);
        bb = find(contains(B2, m1));
        m2=child_parent(aa(i3, 1), 1);
        h1=strcmp(m1, m2);
        if h1==1
           ff(k1-1, bb)=-1;
        else
           ff(k1-1, bb)=job_uses1(aa(i3, 1), 1);
        end
        
    end
end
end

fff=ff;
for i=1:size(fff, 1)
    for j=1:size(fff, 2)
        if fff(i, j)==0
        fff(i, j)=-1;
        end
    end
end
fff=fff(1:size(fff, 1)-2, 2:size(fff, 2)-1);
%=========================================================================%
taskNum = size(B1, 1)-2; % 
% taskNum = size(fff, 1); % 
nvar = taskNum;
% nvar=size(DataSet, 1);    % number of tasks for scheduling.
nvms=size(total_vm, 2);  % number of virtual machine.
dim=nvar;
xmin=1;
xmax=nvms;
lowerBound=xmin;
upperBound=xmax;
%=========================================================================%
% ECT=zeros(nvar,nvms);

% for i1=1:nvar
%     for j1=1:nvms
%         ECT(i1, j1)=DataSet(i1,:)./total_vm(1, j1);
%     end
% end
%=========================================================================% 
DAG = FunctionClass; %produce the structure
DAG.E=fff;%Communication cost between Ti and Tj/set of those task dependencies
DAG.arrivalTime = 0;
%=========================================================================%
% for workflow with 6 tasks
taskNum = 6;
DAG.Wcet = randi([1 100],size(total_vm, 2), taskNum+1);%Computation cost of Ti on pj/the task execution time matrix
DAG.E = [-1 20 24 -1 -1 -1;-1 -1 -1 12 -1 -1;-1 -1 -1 -1 43 -1;-1 -1 -1 -1 -1 70;-1 -1 -1 -1 -1 93;-1 -1 -1 -1 -1 -1];  
%=========================================================================%
energy_Spec =abs(rand(size(total_vm, 2), taskNum));%(NUM Of PROCESSOR)x(num task)
%=========================================================================%
%MFO_SSA
%avg 30 runs
% for i=1:30% 30 Runs
[Resourse_utilization_MFSSA, Throughput_MFSSA, Reliability_MFSSA, Fitnes_value_MFSSA, MakeSpanMax_MFSSA, index_server_MFSSA, pos_best_MFSSA, Leader_pos_MFSSA] = forLoopFuc_MFSSA(taskNum, DAG, energy_Spec, search_agents_number, maxLoop, Node1, Node2, Node3, Node4, Node5, Node6, Node7, Node8, total_vm, nvar, dim, lowerBound,upperBound);
% end
%=========================================================================%
fprintf('1-Resourse_utilization_MFSSA is %f\n', Resourse_utilization_MFSSA);
fprintf('1-Throughput_MFSSA is %f\n', Throughput_MFSSA);%
fprintf('1-Reliability_MFSSA is %f\n', Reliability_MFSSA);%
fprintf('1-MakeSpanMax_MFSSA is %f\n', MakeSpanMax_MFSSA);%
fprintf('1-Fitnes_value_MFSSA is %f\n', Fitnes_value_MFSSA);
%========================================================================

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Taybeh Salehnia, Saeed Naderi, Seyedali Mirjalili, Mahmood Ahmadi (2023) A workflow scheduling in cloud environment using a combination of Moth-Flame and Salp Swarm algorithms

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/829339.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AcWing 202. 最幸运的数字

AcWing 202. 最幸运的数字 思路&#xff1a; Code: #include<bits/stdc.h> using namespace std; typedef long long LL; int gcd(LL n,int m) {return m?gcd(m,n%m):n; } LL get_euler(LL x) { //求欧拉函数LL resx;for(int i2;i<x/i;i) {if(x%i0) {while(x%i0)…

经典CNN(三):DenseNet算法实战与解析

&#x1f368; 本文为&#x1f517;365天深度学习训练营中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊|接辅导、项目定制 1 前言 在计算机视觉领域&#xff0c;卷积神经网络&#xff08;CNN&#xff09;已经成为最主流的方法&#xff0c;比如GoogleNet&#xff0c;…

结算功能实现(小兔鲜儿)【Vue3】

退出登录 - 清空购物车列表 业务需求 在用户退出登录时,除了清除用户信息之外,也需要把购物车数据清空 // 清除购物车const clearCart () > {cartList.value []}// 退出时清除用户信息const clearUserInfo () > {userInfo.value {}// 执行清除购物车的actioncartS…

2023年攻防演练利器之必修高危漏洞合集(包含详细修复建议)

2023年攻防演练利器之必修高危漏洞合集&#xff08;包含详细修复建议&#xff09; 下载地址见盘&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1WeCC7oXFieDs4tBOh7bmWA?pwd12u4 提取码&#xff1a;12u4

PyTorch 中的累积梯度

https://stackoverflow.com/questions/62067400/understanding-accumulated-gradients-in-pytorch 有一个小的计算图&#xff0c;两次前向梯度累积的结果&#xff0c;可以看到梯度是严格相等的。 代码&#xff1a; import numpy as np import torchclass ExampleLinear(torch…

MongoDB文档--基本安装-linux安装(mongodb环境搭建)-docker安装(挂载数据卷)-以及详细版本对比

阿丹&#xff1a; 前面了解了mongodb的一些基本概念。本节文章对安装mongodb进行讲解以及汇总。 官网教程如下&#xff1a; 安装 MongoDB - MongoDB-CN-Manual 版本特性 下面是各个版本的选择请在安装以及选择版本的时候参考一下&#xff1a; MongoDB 2.x 版本&#xff1a…

TensorRT学习笔记--基于YoloV8检测图片和视频

1--完整项目 完整项目地址&#xff1a;https://github.com/liujf69/TensorRT-Demo git clone https://github.com/liujf69/TensorRT-Demo.gitcd TRT_YoloV8 2--模型转换 cd yolov8python gen_wts.py 3--编译项目 mkdir buildcd build cmake .. # 需要更改 CMakeLists.txt…

postgresSQL Extended Query执行过程和sharding-proxy的处理

pg Extended Query PostgreSQL: Documentation: 15: 55.2. Message Flow 多个阶段&#xff0c;可复用 Parse → DESCRIBE statement → SYNC Parse 解析&#xff0c; 将 sql 文本字符串&#xff0c;解析成 named preparedStatement 语句&#xff08;生命周期随session&#x…

数据安全能力框架模型-详细解读(一)

8月30日&#xff0c;奇安信集团正式发布“数据安全能力框架”&#xff0c;以及“数据安全概念运行图”&#xff08;数据安全ConOps&#xff09;&#xff0c;旨在为数字化转型不断深入的大型政企客户以及业内伙伴&#xff0c;提供基于甲方视角的数据安全全面图景&#xff0c;以及…

GESP2023年6月C++一级客观题

一、单选题&#xff08;每题 2 分&#xff0c;共 30 分&#xff09; 以下不属于计算机输出设备的有&#xff08; &#xff09;。 A. 麦克风 B. 音箱 C. 打印机 D. 显示器 ChatGPT 是 OpenAI 研发的聊天机器人程序&#xff0c;它能通过理解和学习人类的语言 来进行对话&#xf…

ES6之Promise、Class类与模块化(Modules)

目录 PromiseClass类extendssuper Modules 模块系统export default 和对应importexport 和 import Promise Promise 是 ES6 引入的一种用于处理异步操作的对象。 它解决了传统回调函数&#xff08;callback&#xff09;模式中容易出现的回调地狱和代码可读性差的问题。 Promis…

Vue.js2+Cesium 四、WMS 服务加载,控制自图层显隐

Vue.js2Cesium 四、WMS 服务加载&#xff0c;控制自图层显隐 Demo <template><divid"cesium-container"style"width: 100%; height: 100%;"><div class"layer_container"><button id"btn">清除</button&g…

大模型开发(十六):从0到1构建一个高度自动化的AI项目开发流程(中)

全文共1w余字&#xff0c;预计阅读时间约40~60分钟 | 满满干货(附代码)&#xff0c;建议收藏&#xff01; 本文目标&#xff1a;通过LtM提示流程实现自动构建符合要求的函数&#xff0c;并通过实验逐步完整测试code_generate函数功能。 代码下载点这里 一、介绍 此篇文章为…

Redis两种持久化方案RDB持久化和AOF持久化

Redis持久化 Redis有两种持久化方案&#xff1a; RDB持久化AOF持久化 1.1.RDB持久化 RDB全称Redis Database Backup file&#xff08;Redis数据备份文件&#xff09;&#xff0c;也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启…

docker---网络

docker网络 使用–publish或-p标志使端口可用于 Docker 外部的服务。这会在主机中创建一条防火墙规则&#xff0c;将容器端口映射到 Docker 主机上通往外界的端口。 -p 8080:80&#xff1a;将容器中的TCP端口80映射到Docker主机上的端口8080。 -p 192.168.1.100:8080:80&…

说明学习委员之作业管理系统—后端部分

项目背景 学习委员收集作业的过程&#xff0c;繁琐且曲折&#xff0c;作者充分理解并体谅为大家服务的苦逼学习委员&#xff0c;以此为出发点和灵感&#xff0c;设计并开发了此套作业管理系统&#xff0c;希望能帮助各位提高效率&#xff0c;早日摆脱重复机械式的工作&#xf…

Vue3和TypeScript_页面

1 在views下新建myView.view 2 在router文件夹里&#xff0c;配置路径&#xff0c;按需引入组件 3 浏览器通过路径访问页面

pycharm——涟漪散点图

from pyecharts import options as opts from pyecharts.charts import EffectScatterc (EffectScatter().add_xaxis( ["高等数学1&#xff0c;2","C语言程序设计","python程序设计","大数据导论","数据结构","大数据…

旺店通·企业奇门和用友U8接口打通对接实战

旺店通企业奇门和用友U8接口打通对接实战 接通系统&#xff1a;旺店通企业奇门 慧策最先以旺店通ERP切入商家核心管理痛点——订单管理&#xff0c;之后围绕电商经营管理中的核心管理诉求&#xff0c;先后布局流量获取、会员管理、仓库管理等其他重要经营模块。慧策的产品线从旺…

QT学习笔记-QT5.15 + MSVC编译套件时编译日志及运行日志日志乱码解决

QT学习笔记-QT5.15 MSVC编译套件时编译日志及运行日志日志中文乱码解决 0、基础环境1、QtCreator中的基本设置编辑->首选项->文本编辑器 2、问题1&#xff1a;MSVC编译日志乱码问题解决问题描述解决方法 3、问题2&#xff1a;MSVC构建套件编译后程序运行日志乱码问题问题…