经典CNN(三):DenseNet算法实战与解析

news2025/1/18 12:03:09
  •  🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊|接辅导、项目定制

 1 前言

    在计算机视觉领域,卷积神经网络(CNN)已经成为最主流的方法,比如GoogleNet,VGG-16,Incepetion等模型。CNN史上的一个里程碑事件是ResNet模型的出现,ResNet可以训练出更深的CNN模型,从而实现更高的准确率。ResNet模型的核心是通过建立前面层与后面层之间的“短路连接”(shortcut, skip connection),进而训练出更深的CNN网络。

    DenseNet模型的基本思路与ResNet一致,但是它建立的是前面所有层与后面层的紧密连接(dense connection),它的名称也是由此而来。DenseNet的另一大特色是通过特征在channel上的的连接来实现特征重用(feature reuse)。这些特点让DenseNet在参数和计算成本更少的情形下实现比ResNet更优的性能,DenseNet也因此斩获CVPR2017的最佳论文奖。

图1 Dense模块(5-layer,growth rate of k=4)

     其中DenseNet论文原文地址为:https://arxiv.org/pdf/1608.06993v5.pdf

 2 设计理念

    相比ResNet,DenseNet提出了一个更激进的密集连接机制:即互相连接所有的层,具体来说就是每个层都会接受前面所有层作为额外的输入。

    图3为ResNet网络的残差连接机制,作为对比,图4为DenseNet的密集连接机制。可以看到,ResNet是每个层与前面的某层(一般是2~4层)短路连接在一起,连接方式是通过元素相加。而在DenseNet中,每个层都会与前面所有层在channel维度上链接(concat)在一起(即元素叠加),并作为下一层的输入。

    对于一个L层的网络,DenseNet共包含{\tfrac{L(L+1)}{2}}个连接,相比ResNet,这是一种密集连接。而且DenseNet是直接concat来自不同层的特征图,这可以实现特征重用,提升效率,这一特点是DenseNet与ResNet最主要的区别。

2.1 标准神经网络

image.png
图2 标准的神经网络传播过程

    图2是一个标准的神经网络传播过程示意图,输入和输出的公式是X_{l}=H_{l}(X_{l-1}),其中 H_{l}是一个组合函数,通常包括BN、ReLu、Pooling、Conv等操作,X_{l-1}是第l层的输入的特征图(来自于l-1层的输出),X_{l}是第l层的输出的特征图。

2.2 ResNet

image.png
图3 ResNet网络的短路连接机制(+代表元素级相加操作)

     图3是ResNet的网络连接机制,由图可知是跨层相加,输入和输出的公式是X_{l}=H_{l}(X_{l-1})+X_{l-1}

 2.3 DenseNet

image.png
图4 DenseNet网络的密集连接机制(其中C代表层级的concat操作)

    图4为DenseNet的连接机制,采用跨通道的concat的形式连接,会连接前面所有层作为输入,输入和输出的公式是X_{l}=H_{l}(X_{0},X_{1},...X_{l-1})。这里要注意所有层的输入都来源于前面所有层在channel维度的concat,以下动图形象表示这一操作。

2020090311071451.gif
图5 DenseNet前向过程

 3 网络结构

    网络的具体实现细节如图6所示。

image.png
图6 DenseNet的网络结构

     CNN网络一般要经过Pooling或者stride>1的Conv来降低特征图的大小,而DenseNet的密集连接方式需要特征图大小保持一致。为了解决这个问题,DenseNet网络中使用DenseBlock+Transition的结构,其中DenseBlock是包含很多层的模块,每个层的特征图大小相同,层与层之间采用密集连接方式。而Transition层是连接两个相邻的DenseBlock,并且通过Pooling使特征图大小降低。图7给出了DenseNet的网络结构,它共包含4个DenseBlock,各个DenseBlock之间通过Transition层连接在一起。

图7 使用DenseBlock+Transition的DenseNet网络

 

    在DenseBlock中,各个层的特征图大小一致,可以在channel维度上连接。DenseBlock中的非线性组合函数H(.)的是BN+ReLU+3*3Conv的结构,如图8所示。另外,与ResNet不同,所有DenseBlock中各个层卷积之后均输出k个特征图,即得到的特征图的channel数为k,或者说采用k个卷积核。k在DenseNet称为growth rate,这是一个超参数。一般情况下使用较小的k(比如12),就可以得到较佳的性能。假定输入层的特征图的channel数为k_{0},那么l层输入的channel数为k_{0}+k_{(1,2,...,l-1)},因此随着层数的增加,尽管k设定的较小,DenseBlock的输入会非常多,不过这是由于特征重用所造成的,每个层仅有k个特征是自己独有的。

image.png
图8 DenseBlock中的非线性转换结构

     由于后面层的输入会非常大,DenseBlock内部采用bottleneck层来减少计算量,主要是原有的结构中增加1*1Conv,如图9所示,即BN+ReLU+1*1Conv+BN+ReLU+3*3Conv,称为DenseNet-B结构。其中1*1Conv得到4k个特征图,它起到的作用是降低特征数量,从而提升计算效率。

image.png
图9 使用bottleneck层的DenseBlock结构

     对于Trasition层,它主要是连接两个相邻的DenseBlock,并且降低特征图大小。Transition层包括一个1*1的卷积和2*2的AvgPooling,结构为BN+ReLU+1*1Conv+2*2AvgPooling。另外,Transition层可以起到压缩模型的作用。假定Transition层的上接DenseBlock得到特征图channels数为m,Transition层可以产生\theta m个特征(通过卷积层),其中\theta\in (0,1]是压缩系数(compression rate)。当\theta =1时,特征个数经过Transition层没有变化,即无压缩,而当压缩系数小于1时,这种结构称为DenseNet-C,文中使用\theta =0.5。对于使用bootleneck层的DenseBlock结构和压缩系数小于1的Transition组合机构称为DenseNet-BC。

    对于ImageNet数据集,图片输入大小为224*224,网络结构采用包含4个DenseBlock的DenseNet-BC,其首先是一个stride=2的7*7卷积层,然后是一个stride=2的3*3MaxPooling层,后面才进入DenseBlock。ImageNet数据集所采用的网络配置如表1所示:

表1 ImageNet数据集上所采用的DenseNet结构

 4 效果对比

image.png
图10 在CIFA-10数据集上ResNet vs DenseNet

 

5 使用Pytroch实现DenseNet121

图11 DenseNet121网络结构图

     图11为DenseNet121的具体网络结构,它与表1中的DenseNet121相对应。左边是整个DenseNet121的网络结构,其中粉色为DenseBlock,最右侧为其详细结构,灰色为Transition,中间为其详细结构。

5.1 前期工作

5.1.1 开发环境

电脑系统:ubuntu16.04

编译器:Jupter Lab

语言环境:Python 3.7

深度学习环境:pytorch

 5.1.2 设置GPU

    如果设备上支持GPU就使用GPU,否则注释掉这部分代码。

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings
 
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
print(device)

5.1.3 导入数据

import os,PIL,random,pathlib

data_dir_str = '../data/bird_photos'
data_dir = pathlib.Path(data_dir_str)
print("data_dir:", data_dir, "\n")
 
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('/')[-1] for path in data_paths]
print('classNames:', classNames , '\n')
 
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # resize输入图片
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换成tensor
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 从数据集中随机抽样计算得到
])
 
total_data = datasets.ImageFolder(data_dir_str, transform=train_transforms)
print(total_data)
print(total_data.class_to_idx)

    结果输出如图:

 

 5.1.4 划分数据集

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)

batch_size = 4
train_dl = torch.utils.data.DataLoader(train_dataset, 
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1,
                                      pin_memory=False)
test_dl = torch.utils.data.DataLoader(test_dataset, 
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1,
                                      pin_memory=False)

for X, y in test_dl:
    print("Shape of X [N, C, H, W]:", X.shape)
    print("Shape of y:", y.shape, y.dtype)
    break

image.png

     结果输出如图:

 5.2 搭建DenseNet121

5.2.1 DenseBlock中的Bottleneck

import torch
from torch import nn

class _DenseLayer(nn.Sequential):
    """
    DenseBlock的基本单元(使用bottleneck)
    """
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        
        self.add_module("norm1", nn.BatchNorm2d(num_input_features))
        self.add_module("relu1", nn.ReLU(inplace=True))
        self.add_module("conv1", nn.Conv2d(num_input_features, bn_size*growth_rate,
                                          kernel_size=1, stride=1, bias=False))
        
        self.add_module("norm2", nn.BatchNorm2d(bn_size*growth_rate))
        self.add_module("relu2", nn.ReLU(inplace=True))
        self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate,
                                          kernel_size=3, stride=1, padding=1, bias=False))
        
        self.drop_rate = drop_rate
        
    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return torch.cat([x, new_features], 1)

5.2.2 DenseBlock层

class _DenseBlock(nn.Sequential):
    def __init__(self, num_layer, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        
        for i in range(num_layer):
            layer = _DenseLayer(num_input_features+i*growth_rate, 
                                growth_rate, bn_size, drop_rate)
            self.add_module("denselayer%d" % (i+1,), layer)

5.2.3 Transition层

class _Transition(nn.Sequential):
    def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        
        self.add_module("norm", nn.BatchNorm2d(num_input_features))
        self.add_module("relu", nn.ReLU(inplace=True))
        self.add_module("conv", nn.Conv2d(num_input_features, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module("pool", nn.AvgPool2d(2, stride=2)) 

5.2.4 DenseNet-BC

import torch.nn.functional as F

#from collections import OrderedDict
import collections

try:
    from collections import OrderedDict
except ImportError:
    OrderedDict = dict

class DenseNet(nn.Module):
    "DenseNet-BC model"
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
                bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=4):
        """
        growth_rate:(int) number of filters used in DenseLayer, 'k' in the paper
        block_config:(list of 4 ints) number of layers in each DenseBlock
        num_init_features:(int) number of filters in the first Conv2d
        bn_size:(int) the factor using in the bottleneck layer
        compression_rate:(float) the compression rate used in Trasition Layer
        drop_rate:(float) the drop rate after each DenseLayer
        num_classes:(int) number of classes for classification
        """
        super(DenseNet, self).__init__()
        
        # first Conv2d
        self.features = nn.Sequential(OrderedDict([
            ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ("norm0", nn.BatchNorm2d(num_init_features)),
            ("relu0", nn.ReLU(inplace=True)),
            ("pool0", nn.MaxPool2d(3, stride=2, padding=1))
        ]))
        
        # DenseBlock
        num_features = num_init_features
        for i,num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
            self.features.add_module("denseblock%d" % (i + 1), block)
            num_features += num_layers*growth_rate
            if i != len(block_config) - 1:
                transition = _Transition(num_features, int(num_features*compression_rate))
                self.features.add_module("transition%d" % (i+1), transition)
                num_features = int(num_features * compression_rate)
                
        # final bn+relu
        self.features.add_module("norm5", nn.BatchNorm2d(num_features))
        self.features.add_module("relu5", nn.ReLU(inplace=True))
        
        # classification layer
        self.classifier = nn.Linear(num_features, num_classes)
        
        # params initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)
        
        
    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
        out = self.classifier(out)
        
        return out

5.2.5 DenseNet121

import re

def densenet121(pretrained=False, **kwargs):
    # DenseNet121
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6,12,24,16), ** kwargs)
    
    if pretrained:
        # '.' are no longer in module names, but pervious _DenseLayer
        # has keys 'norm.1','relu.1','conv.1','norm.2','relu.2','conv.2'.
        # They are also in the checkpoints in model_urls.This pattern is used
        # to find find such keys.
        pattern = re.compile(r'^(.*denselayer\d+\.(?:norm|relu\conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dir = model_zoo.load_url(model_urls['densenet121'])
        for key in list(state_dict.key()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    return model

model = densenet121().to(device)
model

    结果输出如下(由于结果太长,只展示最前面和最后面):

 (中间省略)

 5.2.6 查看模型详情

# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))

        结果输出如下(由于结果太长,只展示最前面和最后面):

 (中间省略)

 5.3 训练模型

5.3.1 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
 
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出pred和真实值y之间的差距,y为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches
 
    return train_acc, train_loss

5.3.2 编写测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0  # 初始化测试损失和正确率
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
   # with torch.no_grad():
    for imgs, target in dataloader:  # 获取图片及其标签
        with torch.no_grad():
            imgs, target = imgs.to(device), target.to(device)
        
            # 计算误差
            tartget_pred = model(imgs)          # 网络输出
            loss = loss_fn(tartget_pred, target)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
            # 记录acc与loss
            test_loss += loss.item()
            test_acc  += (tartget_pred.argmax(1) == target).type(torch.float).sum().item()
            
    test_acc  /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

5.3.3 正式训练

import copy

optimizer = torch.optim.Adam(model.parameters(), lr = 1e-4)
loss_fn = nn.CrossEntropyLoss() #创建损失函数

epochs = 40

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0 #设置一个最佳准确率,作为最佳模型的判别指标

if hasattr(torch.cuda, 'empty_cache'):
    torch.cuda.empty_cache()


for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    #scheduler.step() #更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    #保存最佳模型到best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    #获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    template = ('Epoch: {:2d}. Train_acc: {:.1f}%, Train_loss: {:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr: {:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))

PATH = './J3_best_model.pth'
torch.save(model.state_dict(), PATH)


print('Done')

        结果输出如下:

5.4 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

        结果输出如下:

 6 使用Tensorflow实现DenseNet121

6.1 前期工作

6.1.1 开发环境

电脑系统:ubuntu16.04

编译器:Jupter Lab

语言环境:Python 3.7

深度学习环境:tensorflow

 6.1.2 设置GPU

    如果设备上支持GPU就使用GPU,否则注释掉这部分代码。

import tensorflow as tf
 
gpus = tf.config.list_physical_devices("GPU")
 
if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True) # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]], "GPU")

6.1.2 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
 
import os, PIL, pathlib
import numpy as np
 
from tensorflow import keras
from tensorflow.keras import layers,models
 
data_dir = "../data/bird_photos"
data_dir = pathlib.Path(data_dir)
 
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:", image_count)

6.1.3 加载数据

batch_size = 8
img_height = 224
img_width = 224
 
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
 
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
 
class_Names = train_ds.class_names
print("class_Names:",class_Names)

    输出结果如下:

6.1.4 可视化数据

plt.figure(figsize=(10, 5)) # 图形的宽为10,高为5
plt.suptitle("imshow data")
 
for images,labels in train_ds.take(1):
    for i in range(8):
        ax = plt.subplot(2, 4, i+1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_Names[labels[i]])
        plt.axis("off")

    输出结果如下:

 6.1.5 检查数据

for image_batch, lables_batch in train_ds:
    print(image_batch.shape)
    print(lables_batch.shape)
    break

    输出结果如下:

 6.1.6 配置数据集

AUTOTUNE = tf.data.AUTOTUNE
 
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

6.2 搭建DenseNet121

6.2.1 DenseNet121

import tensorflow as tf
import tensorflow.keras.layers as layers
from tensorflow.keras import regularizers
# from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input,Activation,BatchNormalization,Flatten
from tensorflow.keras.layers import Dense,Conv2D,MaxPooling2D,ZeroPadding2D,AveragePooling2D
from tensorflow.keras.models import Model

def regularized_padded_conv2d(*args, **kwargs):
    """
    带标准化的卷积
    """
    return layers.Conv2D(*args, **kwargs,
                         padding='same', 
                         kernel_regularizer=regularizers.l2(5e-5), 
                         bias_regularizer=regularizers.l2(5e-5),
                         kernel_initializer='glorot_normal')

def DenseLayer(x, growth_rate, bn_size, drop_rate, layerName):
    new_features = layers.BatchNormalization(name=layerName+"_norm1")(x)
    new_features = layers.Activation('relu', name=layerName+"_relu1")(new_features)
    new_features = regularized_padded_conv2d(filters=bn_size*growth_rate, kernel_size=1, strides=1, use_bias=False, name=layerName+"_conv1")(new_features)
    new_features = layers.BatchNormalization(name=layerName+"_norm2")(new_features)
    new_features = layers.Activation('relu', name=layerName+"_relu2")(new_features)
    new_features = regularized_padded_conv2d(filters=growth_rate, kernel_size=3, strides=1, use_bias=False, name=layerName+"_conv2")(new_features)
    
    if drop_rate > 0:
        new_features = layers.Dropout(rate=drop_rate)(new_features)
    return layers.concatenate([x, new_features], axis=-1)
                    
def DenseBlock(x, num_layer, bn_size, growth_rate, drop_rate, blockName):
    for i in range(num_layer):
        x = DenseLayer(x, growth_rate=growth_rate, bn_size=bn_size, drop_rate=drop_rate, layerName=blockName+'_'+str(i+1))
    return x


def Transition(x, num_output_features, blockName):
    x = layers.BatchNormalization(name=blockName+"_norm")(x)
    x =  layers.Activation('relu', name=blockName+"_relu")(x)
    x = regularized_padded_conv2d(filters=num_output_features, kernel_size=1, strides=1, use_bias=False, name=blockName+"_conv")(x)
    x = layers.AveragePooling2D(pool_size=2, strides=2, padding='same', name=blockName+'_pool')(x)
    return x


def densenet121(input_shape=[224,224,3], growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
                bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=4, classifier_activation='softmax'):
    img_input = Input(shape=input_shape)
    
    # first Conv2d
    x = regularized_padded_conv2d(filters=num_init_features, kernel_size=7, strides=2, use_bias=False, name="pre_conv")(img_input)
    x = layers.BatchNormalization(name="pre_norm")(x)
    x = layers.Activation('relu', name="pre_relu")(x)
    x = layers.MaxPool2D(pool_size=3, strides=2, padding='same')(x)
    
    # DenseBlock
    num_features = num_init_features
    for i,num_layer in enumerate(block_config):
        x = DenseBlock(x, num_layer=num_layer, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate, blockName="DenseBlock_"+str(i+1))
            
        num_features += num_layer*growth_rate
        if i != len(block_config) - 1:
            num_features = int(num_features * compression_rate)
            x = Transition(x, num_output_features=num_features, blockName="TransBlock_"+ str(i+1))
                
    # final bn+relu
    x = layers.BatchNormalization(name="norm5")(x)
    x = layers.Activation('relu', name="relu5")(x)
    x = layers.AveragePooling2D(pool_size=7, strides=1, name='pool5')(x) #GlobalAveragePooling2D
                                     
        
    # classification layer
    x = Dense(num_classes, activation=classifier_activation, name='classifier')(x)
    
    model = Model(img_input, x, name='densenet121')
    
    # # 加载预训练模型
    # model.load_weights("resnet50_weights_tf_dim_ordering_tf_kernels.h5")
    
    return model

6.2.2 查看模型详情

model = densenet121() 
model.summary()

    结果如图所示(由于内容较长,只截取前后部分内容):

 (中间部分省略)

6.3 训练模型

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-6)
model.compile(optimizer="adam",
             loss='sparse_categorical_crossentropy',
             metrics=['accuracy'])

epochs = 40
history = model.fit(
                train_ds,
                validation_data=val_ds,
                epochs=epochs)

    结果如下图所示:

6.4 模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.suptitle("DenseNet test")

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation loss')
plt.legend(loc='upper right')
plt.title('Training and Validation loss')
plt.show()

    结果如下图所示:

     结合训练时的输出结果和模型评估图可以看出,训练的效果不理想,修改了learing_rate效果也不明显,后续继续尝试和分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/829337.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

结算功能实现(小兔鲜儿)【Vue3】

退出登录 - 清空购物车列表 业务需求 在用户退出登录时,除了清除用户信息之外,也需要把购物车数据清空 // 清除购物车const clearCart () > {cartList.value []}// 退出时清除用户信息const clearUserInfo () > {userInfo.value {}// 执行清除购物车的actioncartS…

2023年攻防演练利器之必修高危漏洞合集(包含详细修复建议)

2023年攻防演练利器之必修高危漏洞合集(包含详细修复建议) 下载地址见盘: 链接:https://pan.baidu.com/s/1WeCC7oXFieDs4tBOh7bmWA?pwd12u4 提取码:12u4

PyTorch 中的累积梯度

https://stackoverflow.com/questions/62067400/understanding-accumulated-gradients-in-pytorch 有一个小的计算图,两次前向梯度累积的结果,可以看到梯度是严格相等的。 代码: import numpy as np import torchclass ExampleLinear(torch…

MongoDB文档--基本安装-linux安装(mongodb环境搭建)-docker安装(挂载数据卷)-以及详细版本对比

阿丹: 前面了解了mongodb的一些基本概念。本节文章对安装mongodb进行讲解以及汇总。 官网教程如下: 安装 MongoDB - MongoDB-CN-Manual 版本特性 下面是各个版本的选择请在安装以及选择版本的时候参考一下: MongoDB 2.x 版本&#xff1a…

TensorRT学习笔记--基于YoloV8检测图片和视频

1--完整项目 完整项目地址:https://github.com/liujf69/TensorRT-Demo git clone https://github.com/liujf69/TensorRT-Demo.gitcd TRT_YoloV8 2--模型转换 cd yolov8python gen_wts.py 3--编译项目 mkdir buildcd build cmake .. # 需要更改 CMakeLists.txt…

postgresSQL Extended Query执行过程和sharding-proxy的处理

pg Extended Query PostgreSQL: Documentation: 15: 55.2. Message Flow 多个阶段,可复用 Parse → DESCRIBE statement → SYNC Parse 解析, 将 sql 文本字符串,解析成 named preparedStatement 语句(生命周期随session&#x…

数据安全能力框架模型-详细解读(一)

8月30日,奇安信集团正式发布“数据安全能力框架”,以及“数据安全概念运行图”(数据安全ConOps),旨在为数字化转型不断深入的大型政企客户以及业内伙伴,提供基于甲方视角的数据安全全面图景,以及…

GESP2023年6月C++一级客观题

一、单选题(每题 2 分,共 30 分) 以下不属于计算机输出设备的有( )。 A. 麦克风 B. 音箱 C. 打印机 D. 显示器 ChatGPT 是 OpenAI 研发的聊天机器人程序,它能通过理解和学习人类的语言 来进行对话&#xf…

ES6之Promise、Class类与模块化(Modules)

目录 PromiseClass类extendssuper Modules 模块系统export default 和对应importexport 和 import Promise Promise 是 ES6 引入的一种用于处理异步操作的对象。 它解决了传统回调函数(callback)模式中容易出现的回调地狱和代码可读性差的问题。 Promis…

Vue.js2+Cesium 四、WMS 服务加载,控制自图层显隐

Vue.js2Cesium 四、WMS 服务加载&#xff0c;控制自图层显隐 Demo <template><divid"cesium-container"style"width: 100%; height: 100%;"><div class"layer_container"><button id"btn">清除</button&g…

大模型开发(十六):从0到1构建一个高度自动化的AI项目开发流程(中)

全文共1w余字&#xff0c;预计阅读时间约40~60分钟 | 满满干货(附代码)&#xff0c;建议收藏&#xff01; 本文目标&#xff1a;通过LtM提示流程实现自动构建符合要求的函数&#xff0c;并通过实验逐步完整测试code_generate函数功能。 代码下载点这里 一、介绍 此篇文章为…

Redis两种持久化方案RDB持久化和AOF持久化

Redis持久化 Redis有两种持久化方案&#xff1a; RDB持久化AOF持久化 1.1.RDB持久化 RDB全称Redis Database Backup file&#xff08;Redis数据备份文件&#xff09;&#xff0c;也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启…

docker---网络

docker网络 使用–publish或-p标志使端口可用于 Docker 外部的服务。这会在主机中创建一条防火墙规则&#xff0c;将容器端口映射到 Docker 主机上通往外界的端口。 -p 8080:80&#xff1a;将容器中的TCP端口80映射到Docker主机上的端口8080。 -p 192.168.1.100:8080:80&…

说明学习委员之作业管理系统—后端部分

项目背景 学习委员收集作业的过程&#xff0c;繁琐且曲折&#xff0c;作者充分理解并体谅为大家服务的苦逼学习委员&#xff0c;以此为出发点和灵感&#xff0c;设计并开发了此套作业管理系统&#xff0c;希望能帮助各位提高效率&#xff0c;早日摆脱重复机械式的工作&#xf…

Vue3和TypeScript_页面

1 在views下新建myView.view 2 在router文件夹里&#xff0c;配置路径&#xff0c;按需引入组件 3 浏览器通过路径访问页面

pycharm——涟漪散点图

from pyecharts import options as opts from pyecharts.charts import EffectScatterc (EffectScatter().add_xaxis( ["高等数学1&#xff0c;2","C语言程序设计","python程序设计","大数据导论","数据结构","大数据…

旺店通·企业奇门和用友U8接口打通对接实战

旺店通企业奇门和用友U8接口打通对接实战 接通系统&#xff1a;旺店通企业奇门 慧策最先以旺店通ERP切入商家核心管理痛点——订单管理&#xff0c;之后围绕电商经营管理中的核心管理诉求&#xff0c;先后布局流量获取、会员管理、仓库管理等其他重要经营模块。慧策的产品线从旺…

QT学习笔记-QT5.15 + MSVC编译套件时编译日志及运行日志日志乱码解决

QT学习笔记-QT5.15 MSVC编译套件时编译日志及运行日志日志中文乱码解决 0、基础环境1、QtCreator中的基本设置编辑->首选项->文本编辑器 2、问题1&#xff1a;MSVC编译日志乱码问题解决问题描述解决方法 3、问题2&#xff1a;MSVC构建套件编译后程序运行日志乱码问题问题…

多雷达探测论文阅读笔记:雷达学报 2023, 多雷达协同探测技术研究进展:认知跟踪与资源调度算法

多雷达协同探测技术 原始笔记链接:https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486627&idx=1&sn=f32c31bfea98b85f2105254a4e64d210&chksm=cf51be5af826374c706f3c9dcd5392e0ed2a5fb31ab20924b7dd38e1b1ae32abe9a48afa8174#rd ↑ \uparrow …

Redis—全局命令

Redis—全局命令 &#x1f50e;get / set&#x1f50e;常用全局命令keysexistsdelexpirettlkey 的过期策略type Redis 官网 Redis 中的命令不区分大小写 进入 Redis 客户端 redis-cli -h Redis 服务器的 IP 地址 -p Redis 服务器的端口号省略 -h 表示 Redis 服务器的 IP 地址…