31.利用linprog 解决 投资问题(matlab程序)

news2025/1/17 0:11:12

1.简述

      

 

语法:[X,FVAL] = linprog(f,a,b,Aeq,Beq,LB,UB,X0);

    X 为最终解 , FVAL为最终解对应的函数值
    *注意:求最大值时,结果FVAL需要取反*
    
    f 为决策函数的系数矩阵。
    *注意:当所求为最大值时,系数矩阵需要取反*
    
    a 为约束条件中不等式组的系数矩阵 ,a的列数等于f的列数
    *注意:当不等号为  > 或  ≥ 时,矩阵需要取反*
    
    b 为约束条件中不等式组右边的值
    *注意:当不等号为  > 或  ≥ 时,矩阵需要取反*
    
    Aeq 为约束条件中等式组的系数矩阵 ,Aeq的列数等于f的列数
    
    Beq 为约束条件中等式组右边的值
    
    LB、UB 是解的范围
    
    X0  为初始值
 

2.代码

 

主程序:

%%   投资问题
f=[-0.2;-0.12;-0.09;-0.14];
A=[1,-1,-1,-1;0,-1,-1,1];
b=[0;0];
Aeq=[1,1,1,1];
beq=1;
l=[0 0 0];
u=[1 1 1];
[xo,yo,exitflag]=linprog(f,A,b,Aeq,beq,l,u)

 

 

子程序:

function [x,fval,exitflag,output,lambda]=linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)
%LINPROG Linear programming.
%   X = LINPROG(f,A,b) attempts to solve the linear programming problem:
%
%            min f'*x    subject to:   A*x <= b
%             x
%
%   X = LINPROG(f,A,b,Aeq,beq) solves the problem above while additionally
%   satisfying the equality constraints Aeq*x = beq. (Set A=[] and B=[] if
%   no inequalities exist.)
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper
%   bounds on the design variables, X, so that the solution is in
%   the range LB <= X <= UB. Use empty matrices for LB and UB
%   if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;
%   set UB(i) = Inf if X(i) is unbounded above.
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0. This
%   option is only available with the active-set algorithm. The default
%   interior point algorithm will ignore any non-empty starting point.
%
%   X = LINPROG(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the vector 'f' in PROBLEM.f, the linear inequality
%   constraints in PROBLEM.Aineq and PROBLEM.bineq, the linear equality
%   constraints in PROBLEM.Aeq and PROBLEM.beq, the lower bounds in
%   PROBLEM.lb, the upper bounds in  PROBLEM.ub, the start point
%   in PROBLEM.x0, the options structure in PROBLEM.options, and solver
%   name 'linprog' in PROBLEM.solver. Use this syntax to solve at the
%   command line a problem exported from OPTIMTOOL.
%
%   [X,FVAL] = LINPROG(f,A,b) returns the value of the objective function
%   at X: FVAL = f'*X.
%
%   [X,FVAL,EXITFLAG] = LINPROG(f,A,b) returns an EXITFLAG that describes
%   the exit condition. Possible values of EXITFLAG and the corresponding
%   exit conditions are
%
%     3  LINPROG converged to a solution X with poor constraint feasibility.
%     1  LINPROG converged to a solution X.
%     0  Maximum number of iterations reached.
%    -2  No feasible point found.
%    -3  Problem is unbounded.
%    -4  NaN value encountered during execution of algorithm.
%    -5  Both primal and dual problems are infeasible.
%    -7  Magnitude of search direction became too small; no further
%         progress can be made. The problem is ill-posed or badly
%         conditioned.
%    -9  LINPROG lost feasibility probably due to ill-conditioned matrix.
%
%   [X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) returns a structure OUTPUT
%   with the number of iterations taken in OUTPUT.iterations, maximum of
%   constraint violations in OUTPUT.constrviolation, the type of
%   algorithm used in OUTPUT.algorithm, the number of conjugate gradient
%   iterations in OUTPUT.cgiterations (= 0, included for backward
%   compatibility), and the exit message in OUTPUT.message.
%
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = LINPROG(f,A,b) returns the set of
%   Lagrangian multipliers LAMBDA, at the solution: LAMBDA.ineqlin for the
%   linear inequalities A, LAMBDA.eqlin for the linear equalities Aeq,
%   LAMBDA.lower for LB, and LAMBDA.upper for UB.
%
%   NOTE: the interior-point (the default) algorithm of LINPROG uses a
%         primal-dual method. Both the primal problem and the dual problem
%         must be feasible for convergence. Infeasibility messages of
%         either the primal or dual, or both, are given as appropriate. The
%         primal problem in standard form is
%              min f'*x such that A*x = b, x >= 0.
%         The dual problem is
%              max b'*y such that A'*y + s = f, s >= 0.
%
%   See also QUADPROG.

%   Copyright 1990-2018 The MathWorks, Inc.

% If just 'defaults' passed in, return the default options in X

% Default MaxIter, TolCon and TolFun is set to [] because its value depends
% on the algorithm.
defaultopt = struct( ...
    'Algorithm','dual-simplex', ...
    'Diagnostics','off', ...
    'Display','final', ...
    'LargeScale','on', ...
    'MaxIter',[], ...
    'MaxTime', Inf, ...
    'Preprocess','basic', ...
    'TolCon',[],...
    'TolFun',[]);

if nargin==1 && nargout <= 1 && strcmpi(f,'defaults')
   x = defaultopt;
   return
end

% Handle missing arguments
if nargin < 9
    options = [];
    % Check if x0 was omitted and options were passed instead
    if nargin == 8
        if isa(x0, 'struct') || isa(x0, 'optim.options.SolverOptions')
            options = x0;
            x0 = [];
        end
    else
        x0 = [];
        if nargin < 7
            ub = [];
            if nargin < 6
                lb = [];
                if nargin < 5
                    Beq = [];
                    if nargin < 4
                        Aeq = [];
                    end
                end
            end
        end
    end
end

% Detect problem structure input
problemInput = false;
if nargin == 1
    if isa(f,'struct')
        problemInput = true;
        [f,A,B,Aeq,Beq,lb,ub,x0,options] = separateOptimStruct(f);
    else % Single input and non-structure.
        error(message('optim:linprog:InputArg'));
    end
end

% No options passed. Set options directly to defaultopt after
allDefaultOpts = isempty(options);

% Prepare the options for the solver
options = prepareOptionsForSolver(options, 'linprog');

if nargin < 3 && ~problemInput
  error(message('optim:linprog:NotEnoughInputs'))
end

% Define algorithm strings
thisFcn  = 'linprog';
algIP    = 'interior-point-legacy';
algDSX   = 'dual-simplex';
algIP15b = 'interior-point';

% Check for non-double inputs
msg = isoptimargdbl(upper(thisFcn), {'f','A','b','Aeq','beq','LB','UB', 'X0'}, ...
                                      f,  A,  B,  Aeq,  Beq,  lb,  ub,   x0);
if ~isempty(msg)
    error('optim:linprog:NonDoubleInput',msg);
end

% After processing options for optionFeedback, etc., set options to default
% if no options were passed.
if allDefaultOpts
    % Options are all default
    options = defaultopt;
end

if nargout > 3
   computeConstrViolation = true;
   computeFirstOrderOpt = true;
   % Lagrange multipliers are needed to compute first-order optimality
   computeLambda = true;
else
   computeConstrViolation = false;
   computeFirstOrderOpt = false;
   computeLambda = false;
end

% Algorithm check:
% If Algorithm is empty, it is set to its default value.
algIsEmpty = ~isfield(options,'Algorithm') || isempty(options.Algorithm);
if ~algIsEmpty
    Algorithm = optimget(options,'Algorithm',defaultopt,'fast',allDefaultOpts);
    OUTPUT.algorithm = Algorithm;
    % Make sure the algorithm choice is valid
    if ~any(strcmp({algIP; algDSX; algIP15b},Algorithm))
        error(message('optim:linprog:InvalidAlgorithm'));
    end
else
    Algorithm = algDSX;
    OUTPUT.algorithm = Algorithm;
end

% Option LargeScale = 'off' is ignored
largescaleOn = strcmpi(optimget(options,'LargeScale',defaultopt,'fast',allDefaultOpts),'on');
if ~largescaleOn
    [linkTag, endLinkTag] = linkToAlgDefaultChangeCsh('linprog_warn_largescale');
    warning(message('optim:linprog:AlgOptsConflict', Algorithm, linkTag, endLinkTag));
end

% Options setup
diagnostics = strcmpi(optimget(options,'Diagnostics',defaultopt,'fast',allDefaultOpts),'on');
switch optimget(options,'Display',defaultopt,'fast',allDefaultOpts)
    case {'final','final-detailed'}
        verbosity = 1;
    case {'off','none'}
        verbosity = 0;
    case {'iter','iter-detailed'}
        verbosity = 2;
    case {'testing'}
        verbosity = 3;
    otherwise
        verbosity = 1;
end

% Set the constraints up: defaults and check size
[nineqcstr,nvarsineq] = size(A);
[neqcstr,nvarseq] = size(Aeq);
nvars = max([length(f),nvarsineq,nvarseq]); % In case A is empty

if nvars == 0
    % The problem is empty possibly due to some error in input.
    error(message('optim:linprog:EmptyProblem'));
end

if isempty(f), f=zeros(nvars,1); end
if isempty(A), A=zeros(0,nvars); end
if isempty(B), B=zeros(0,1); end
if isempty(Aeq), Aeq=zeros(0,nvars); end
if isempty(Beq), Beq=zeros(0,1); end

% Set to column vectors
f = f(:);
B = B(:);
Beq = Beq(:);

if ~isequal(length(B),nineqcstr)
    error(message('optim:linprog:SizeMismatchRowsOfA'));
elseif ~isequal(length(Beq),neqcstr)
    error(message('optim:linprog:SizeMismatchRowsOfAeq'));
elseif ~isequal(length(f),nvarsineq) && ~isempty(A)
    error(message('optim:linprog:SizeMismatchColsOfA'));
elseif ~isequal(length(f),nvarseq) && ~isempty(Aeq)
    error(message('optim:linprog:SizeMismatchColsOfAeq'));
end

[x0,lb,ub,msg] = checkbounds(x0,lb,ub,nvars);
if ~isempty(msg)
   exitflag = -2;
   x = x0; fval = []; lambda = [];
   output.iterations = 0;
   output.constrviolation = [];
   output.firstorderopt = [];
   output.algorithm = ''; % not known at this stage
   output.cgiterations = [];
   output.message = msg;
   if verbosity > 0
      disp(msg)
   end
   return
end

if diagnostics
   % Do diagnostics on information so far
   gradflag = []; hessflag = []; constflag = false; gradconstflag = false;
   non_eq=0;non_ineq=0; lin_eq=size(Aeq,1); lin_ineq=size(A,1); XOUT=ones(nvars,1);
   funfcn{1} = []; confcn{1}=[];
   diagnose('linprog',OUTPUT,gradflag,hessflag,constflag,gradconstflag,...
      XOUT,non_eq,non_ineq,lin_eq,lin_ineq,lb,ub,funfcn,confcn);
end

% Throw warning that x0 is ignored (true for all algorithms)
if ~isempty(x0) && verbosity > 0
    fprintf(getString(message('optim:linprog:IgnoreX0',Algorithm)));
end

if strcmpi(Algorithm,algIP)
    % Set the default values of TolFun and MaxIter for this algorithm
    defaultopt.TolFun = 1e-8;
    defaultopt.MaxIter = 85;
    [x,fval,lambda,exitflag,output] = lipsol(f,A,B,Aeq,Beq,lb,ub,options,defaultopt,computeLambda);
elseif strcmpi(Algorithm,algDSX) || strcmpi(Algorithm,algIP15b)

    % Create linprog options object
    algoptions = optimoptions('linprog', 'Algorithm', Algorithm);

    % Set some algorithm specific options
    if isfield(options, 'InternalOptions')
        algoptions = setInternalOptions(algoptions, options.InternalOptions);
    end

    thisMaxIter = optimget(options,'MaxIter',defaultopt,'fast',allDefaultOpts);
    if strcmpi(Algorithm,algIP15b)
        if ischar(thisMaxIter)
            error(message('optim:linprog:InvalidMaxIter'));
        end
    end
    if strcmpi(Algorithm,algDSX)
        algoptions.Preprocess = optimget(options,'Preprocess',defaultopt,'fast',allDefaultOpts);
        algoptions.MaxTime = optimget(options,'MaxTime',defaultopt,'fast',allDefaultOpts);
        if ischar(thisMaxIter) && ...
                ~strcmpi(thisMaxIter,'10*(numberofequalities+numberofinequalities+numberofvariables)')
            error(message('optim:linprog:InvalidMaxIter'));
        end
    end

    % Set options common to dual-simplex and interior-point-r2015b
    algoptions.Diagnostics = optimget(options,'Diagnostics',defaultopt,'fast',allDefaultOpts);
    algoptions.Display = optimget(options,'Display',defaultopt,'fast',allDefaultOpts);
    thisTolCon = optimget(options,'TolCon',defaultopt,'fast',allDefaultOpts);
    if ~isempty(thisTolCon)
        algoptions.TolCon = thisTolCon;
    end
    thisTolFun = optimget(options,'TolFun',defaultopt,'fast',allDefaultOpts);
    if ~isempty(thisTolFun)
        algoptions.TolFun = thisTolFun;
    end
    if ~isempty(thisMaxIter) && ~ischar(thisMaxIter)
        % At this point, thisMaxIter is either
        % * a double that we can set in the options object or
        % * the default string, which we do not have to set as algoptions
        % is constructed with MaxIter at its default value
        algoptions.MaxIter = thisMaxIter;
    end

    % Create a problem structure. Individually creating each field is quicker
    % than one call to struct
    problem.f = f;
    problem.Aineq = A;
    problem.bineq = B;
    problem.Aeq = Aeq;
    problem.beq = Beq;
    problem.lb = lb;
    problem.ub = ub;
    problem.options = algoptions;
    problem.solver = 'linprog';

    % Create the algorithm from the options.
    algorithm = createAlgorithm(problem.options);

    % Check that we can run the problem.
    try
        problem = checkRun(algorithm, problem, 'linprog');
    catch ME
        throw(ME);
    end

    % Run the algorithm
    [x, fval, exitflag, output, lambda] = run(algorithm, problem);

    % If exitflag is {NaN, <aString>}, this means an internal error has been
    % thrown. The internal exit code is held in exitflag{2}.
    if iscell(exitflag) && isnan(exitflag{1})
        handleInternalError(exitflag{2}, 'linprog');
    end

end

output.algorithm = Algorithm;

% Compute constraint violation when x is not empty (interior-point/simplex presolve
% can return empty x).
if computeConstrViolation && ~isempty(x)
    output.constrviolation = max([0; norm(Aeq*x-Beq, inf); (lb-x); (x-ub); (A*x-B)]);
else
    output.constrviolation = [];
end

% Compute first order optimality if needed. This information does not come
% from either qpsub, lipsol, or simplex.
if exitflag ~= -9 && computeFirstOrderOpt && ~isempty(lambda)
    output.firstorderopt = computeKKTErrorForQPLP([],f,A,B,Aeq,Beq,lb,ub,lambda,x);
else
    output.firstorderopt = [];
end

 

3.运行结果

 

3f6f4a1a59704025af50a448a130d13c.png

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/822137.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

代码随想录算法训练营第六天| 454.四数相加II,383. 赎金信的交集, 15.三数之和(需要二刷) 18.四数之和(需要二刷)

454.四数相加II 暴力超时 class Solution {public int fourSumCount(int[] nums1, int[] nums2, int[] nums3, int[] nums4) {//超出时间限制//分别从4个数组中任选一个&#xff0c;四数相加0int n nums4.length,index0;int count0;int[] arr1new int[n*n];int[] arr2new i…

机器学习:训练集与测试集分割train_test_split

1 引言 在使用机器学习训练模型算法的过程中&#xff0c;为提高模型的泛化能力、防止过拟合等目的&#xff0c;需要将整体数据划分为训练集和测试集两部分&#xff0c;训练集用于模型训练&#xff0c;测试集用于模型的验证。此时&#xff0c;使用train_test_split函数可便捷高…

Go语言性能优化建议与pprof性能调优详解——结合博客项目实战

文章目录 性能优化建议Benchmark的使用slice优化预分配内存大内存未释放 map优化字符串处理优化结构体优化atomic包小结 pprof性能调优采集性能数据服务型应用go tool pprof命令项目调优分析修改main.go安装go-wrk命令行交互界面图形化火焰图 性能优化建议 简介&#xff1a; …

python用来做什么的,python用来干什么的

大家好&#xff0c;小编为大家解答python用来干什么的的问题。很多人还不知道python用来做什么的&#xff0c;现在让我们一起来看看吧&#xff01; 编程语言python是用来干什么的&#xff1f; python的作用&#xff1a; 1、系统编程&#xff1a;提供API(ApplicationProgrammin…

【算法提高:动态规划】1.3 背包模型 TODO

文章目录 例题列表423. 采药&#xff08;01背包&#xff09;1024. 装箱问题&#xff08;大小和价值相等的01背包&#xff09;1022. 宠物小精灵之收服&#xff08;二维费用的背包问题&#xff09;补充&#xff1a;相关题目——8. 二维费用的背包问题 278. 数字组合&#xff08;0…

阿里云负载均衡SLB网络型NLB负载均衡架构性能详解

阿里云网络型负载均衡NLB是阿里云推出的新一代四层负载均衡&#xff0c;支持超高性能和自动弹性能力&#xff0c;单实例可以达到1亿并发连接&#xff0c;帮您轻松应对高并发业务。网络型负载均衡NLB具有超强性能、自动弹性伸缩、高可用、TCPSSL卸载、多场景流量分发和丰富的高级…

【初阶C语言】数组

目录 一、一维数组 1.一维数组的创建和初始化 2.一维数组的使用 3.一维数组在内存中的存储 二、二维数组 1.二维数组的创建 2.二维数组的初始化 3.二维数组的使用 4.二维数组在内存中的存储 三、数组的越界问题 四、数组传参 前言&#xff1a; 数组在C语言中是一个…

express学习笔记6 - 用户模块

新建router/user.js const express require(express) const routerexpress.Router() router.get(/login, function(req, res, next) {console.log(/user/login, req.body)res.json({code: 0,msg: 登录成功})})module.exportsrouter 在router/user.js引入并使用 const us…

一起学算法(链表篇)

1.链表的概念 对于顺序存储的结构最大的缺点就是插入和排序的时候需要移动大量的元素&#xff0c;所以链表的出生由此而来 先上代码&#xff1a; // 链表 public class LinkedList<T extends Comparable> {// 结点类class Node {T ele; // 当前结点上的元素内容Node ne…

java学习路程之篇四、进阶知识、石头迷阵游戏、绘制界面、打乱石头方块、移动业务、游戏判定胜利、统计步数、重新游戏

文章目录 1、绘制界面2、打乱石头方块3、移动业务4、游戏判定胜利5、统计步数6、重新游戏7、完整代码 1、绘制界面 2、打乱石头方块 3、移动业务 4、游戏判定胜利 5、统计步数 6、重新游戏 7、完整代码 java之石头迷阵单击游戏、继承、接口、窗体、事件、组件、按钮、图片

【Spring】Spring 中事务的实现

目录 1.编程式事务&#xff08;手动编写代码&#xff09;2.声明式事务&#xff08;利用注解&#xff09;2.1 Transactional作用范围2.2 Transactional参数说明2.3 Transactional工作原理 3.Spring 中设置事务隔离级别3.1 事务四大特性ACID3.2 事务的隔离级别3.2 Spring中设置事…

(13) Qt事件系统(two)

目录 事件分发函数 无边框窗口拖动 自定义事件 发送事件的函数 自定义事件 系统定义的事件号 自定义事件号 自定义事件类 发送和处理事件 sendEvent与postEvent的区别 栈区对象 堆区对象 事件传播机制 事件传播的过程 事件传播到父组件 鼠标单击事件与按钮单击信…

【STM32零基础入门教程03】GPIO输入输出之GPIO框图分析

本章节主要讲解点亮LED的基本原理&#xff0c;以及GPIO框图的讲解。 如何点亮LED&#xff08;输出&#xff09; 首先我们查看原理图&#xff0c;观察电路图中LED的连接情况&#xff0c;如下图可以看出我们的板子中LED一端通过限流电阻连接的PB0另一端连接的是高电平VCC&#xf…

30. 利用linprog 解决 生产决策问题(matlab程序)

1.简述 线线规划的几个基本性质&#xff1a;【文献[1]第46页】 (1)线性规划问题的可行域如果非空&#xff0c;则是一个凸集-凸多面体&#xff1b; (2)如果线性规划问题有最优解&#xff0c;那么最优解可在可行域的顶点中确定&#xff1b; (3)如果可行域有界&#xff0c;且可行域…

【数据中台】DataX源码进行二开插件

参考官方 使用的离线数据同步工具/平台&#xff0c;实现不同数据库等各种异构数据源之间高效的数据同步功能 工具部署 https://github.com/alibaba/DataX/blob/master/userGuid.md 拉取下来的代码&#xff0c;pom.xml里面注释 <!--<module>tsdbreader</module&g…

大整数截取解决方法(java代码)

大整数截取解决方法&#xff08;java代码&#xff09; 描述输入描述输出描述输入示例输出示例前置知识&#xff1a;代码 解题思路来自这个博客&#xff1a;简单^不简单 https://blog.csdn.net/younger_china/article/details/126376374 描述 花花有一个很珍贵的数字串&#xf…

P4053 [JSOI2007] 建筑抢修(贪心)(内附封面)

[JSOI2007] 建筑抢修 题目描述 小刚在玩 JSOI 提供的一个称之为“建筑抢修”的电脑游戏&#xff1a;经过了一场激烈的战斗&#xff0c;T 部落消灭了所有 Z 部落的入侵者。但是 T 部落的基地里已经有 N N N 个建筑设施受到了严重的损伤&#xff0c;如果不尽快修复的话&#x…

python项目开发案例集锦,python开发程序流程

大家好&#xff0c;给大家分享一下python项目开发案例集锦 源码&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 今天任务 1.创建Python项目为pythontest1以及test1.py文件 2.修改字号 3.输入九九乘法表程序&#xff0c;编译调试执行 4.配置…

Python selenium对应的浏览器chromedriver版本不一致

1、chrome和chromedriver版本不一致导致的&#xff0c;我们只需要升级下chromedriver的版本即可 浏览器版本查看 //打开google浏览器直接访问&#xff0c;查看浏览器版本 chrome://version/ 查看chromedriver的版本 //查看驱动版本 chromedriver chromedriver下载 可看到浏…

基于 Debian GNU/Linux 12 “书虫 “的Neptune 8.0 “Juna “来了

导读Neptune Linux 发行版背后的团队发布了 Neptune 8.0&#xff0c;作为这个基于 Debian 的 GNU/Linux 发行版的重大更新&#xff0c;它围绕最新的 KDE Plasma 桌面环境构建。 Neptune 8.0 被命名为 “Juna”&#xff0c;是在Neptune 7.5 发布 11 个月后发布的&#xff0c;也是…