【Python机器学习】实验07 K-means无监督聚类

news2025/1/19 8:10:52

文章目录

  • 聚类
    • K-means 聚类
      • 1 准备数据
      • 2 给定聚类中心,计算每个点属于哪个聚类,定义函数实现
      • 3 根据已有的数据的标记,来重新更新聚类中心,定义相应的函数
      • 4 初始化聚类中心,定义相应的函数
      • 5 定义K-means算法
      • 6 绘制各个聚类的图
      • 7 定义评价函数--即任意一点所在聚类与聚类中心的距离平方和
      • 8 使用“肘部法则”选取k值
      • 9 画张图来可视化选择K
      • 10 对任意样本来预测其所属的聚类
    • 试试Sklearn
    • 实验1 K-means实现无监督聚类
      • 1 定义和调用更新每个样本所属聚类,聚类中心更新,初始化聚类中心的参数
      • 2 定义Kmeans算法获得最终的聚类中心和样本所属聚类索引
      • 3 绘制各个聚类的图
      • 4 定义评价函数--即任意一点所在聚类与聚类中心的距离平方和
      • 5 使用“肘部法则”选取k值
      • 6 对任意样本来预测其所属的聚类
      • 7 试试SKLERAN

聚类

在本练习中,我们将实现K-means聚类

K-means 聚类

我们将实施和应用K-means到一个简单的二维数据集,以获得一些直观的工作原理。 K-means是一个迭代的,无监督的聚类算法,将类似的实例组合成簇。 该算法通过猜测每个簇的初始聚类中心开始,然后重复将实例分配给最近的簇,并重新计算该簇的聚类中心。 我们要实现的第一部分是找到数据中每个实例最接近的聚类中心的函数。

1 准备数据

无监督学习中,数据是不带任何标签的

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
data=pd.read_csv("data/ex7data2.csv")
data.head()
X1X2
01.8420804.607572
15.6585834.799964
26.3525793.290854
32.9040174.612204
43.2319794.939894
import seaborn as sb
plt.figure(figsize=(4,6))
sb.lmplot(x="X1",y="X2",data=data,fit_reg=False)
plt.show()
<Figure size 288x432 with 0 Axes>

0

1 初始化聚类中心
2 所有样本点聚类(计算每个样本点与聚类中心的距离,选择最小距离的聚类中心所在的聚类作为该样本所属聚类)
3 重新计算聚类中心(每个聚类中所有样本的均值)
4 迭代执行2-3直到聚类中心不再变化(iter_num)

2 给定聚类中心,计算每个点属于哪个聚类,定义函数实现

#给定聚类中心,如何求每个样本所属的聚类
def find_closest(X,centroids):
    #样本数量
    m=X.shape[0]
    idx=np.zeros(m)
    k=centroids.shape[0]
    #遍历所有样本
    for i in range(m):
        distance=10000
        #遍历所有聚类中心
        for j in range(k): 
            #计算样本与聚类中心的距离
            dist=np.sum(np.power(X[i,:]-centroids[j,:],2))
            if dist<distance:
                distance=dist
                idx[i]=j
    return idx
#测试一下
centorids=np.arange(1,5).reshape(2,2)
centorids
array([[1, 2],
       [3, 4]])
idx=find_closest(data.values,centorids)
idx
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0.,
       1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0.,
       0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

3 根据已有的数据的标记,来重新更新聚类中心,定义相应的函数

index=np.where(idx==0)[0]
index
array([ 56, 100, 101, 103, 104, 105, 106, 107, 108, 110, 111, 112, 114,
       115, 117, 118, 119, 120, 121, 122, 124, 125, 126, 127, 128, 129,
       130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 143, 144,
       145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
       158, 159, 162, 164, 165, 166, 167, 168, 169, 170, 172, 174, 175,
       176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 188, 189,
       190, 191, 192, 193, 194, 195, 197, 198, 199], dtype=int64)
def update_centorids(X,idx,k):
    centorids=np.zeros((k,X.shape[1]))
    for i in range(k):
        index=np.where(idx==i)[0]
        centorids[i]=np.sum(X[index,:],axis=0)/len(index)
    return centorids
#测试函数
update_centorids(data.values,idx,2)
array([[2.8195125 , 0.99467112],
       [4.03762952, 3.8009101 ]])

4 初始化聚类中心,定义相应的函数

def initialize_centroid(X,k):
    np.random.seed(30)
    index_initial=[np.random.randint(1,X.shape[0]) for i in range(k)]
    centorids=np.zeros((k,X.shape[1]))
    print(index_initial)
    for i,j in enumerate(index_initial):
        centorids[i]=X[j,:]
    return centorids
#测试一下该函数
initialize_centroid(data.values,3)
[294, 141, 252]

array([[6.48212628, 2.5508514 ],
       [3.7875723 , 1.45442904],
       [6.01017978, 2.72401338]])
data.values[294]
array([6.48212628, 2.5508514 ])

5 定义K-means算法

#设计K-means算法
def k_means(X,k,iter_num):
    centroids=np.zeros((k,X.shape[1]))
    #初始化聚类中心
    centroids=initialize_centroid(X,k)
    for i in range(iter_num):
        #每个样本找到所属聚类
        idx=find_closest(X,centroids)
        print(idx)
        #更新新的聚类中心
        centroids=update_centorids(X,idx,k)
        
        print(centroids)
    return centroids,idx
centroids,idx=k_means(data.values,3,10)
[294, 141, 252]
[1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 2.
 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 2.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 2. 2. 0. 2. 2. 2. 0. 2. 2. 2. 0. 0. 0. 0. 2. 2.
 2. 0. 0. 0. 2. 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 0. 2. 0. 2. 0. 2. 2. 1.
 2. 1. 2. 0. 0. 0. 2. 2. 2. 2. 2. 0. 2. 0. 2. 2. 2. 0. 0. 0. 0. 2. 0. 2.
 0. 1. 0. 2. 2. 2. 0. 2. 0. 1. 2. 2. 2. 2. 2. 2. 0. 2. 0. 0. 2. 2. 2. 0.
 2. 2. 2. 2. 2. 2. 0. 0. 0. 2. 2. 1.]
[[6.89324886 2.94679018]
 [2.48934355 2.89564245]
 [5.42986227 3.25759288]]
[1. 2. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1.
 1. 1. 1. 1. 2. 1. 1. 1. 2. 2. 0. 2. 2. 2. 0. 2. 2. 2. 0. 0. 0. 0. 0. 2.
 2. 0. 0. 0. 2. 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 2. 0. 2. 2. 1.
 0. 2. 2. 0. 0. 0. 2. 2. 2. 2. 2. 0. 2. 0. 0. 0. 2. 0. 0. 0. 0. 2. 0. 2.
 0. 1. 0. 2. 2. 2. 0. 2. 0. 2. 2. 0. 2. 2. 0. 2. 0. 2. 0. 0. 0. 0. 2. 0.
 2. 2. 2. 2. 2. 2. 0. 0. 0. 2. 0. 1.]
[[6.73758256 2.94610993]
 [2.41318124 3.02894849]
 [5.28641575 2.89315506]]
[1. 2. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 2. 1. 2. 1. 1. 2. 1. 2. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1.
 1. 2. 1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 2. 2. 1. 1.
 1. 2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 2. 1. 2. 1. 1. 1. 1.
 1. 2. 1. 2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 2. 1. 1. 1. 1.
 1. 1. 1. 1. 2. 1. 1. 1. 2. 0. 0. 2. 2. 0. 0. 2. 2. 2. 0. 0. 0. 0. 0. 2.
 2. 0. 0. 0. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 2. 2. 0. 0. 0. 2. 0. 2. 2. 2.
 0. 2. 2. 0. 0. 0. 2. 2. 2. 0. 2. 0. 2. 0. 0. 0. 2. 0. 0. 0. 0. 2. 0. 2.
 0. 1. 0. 2. 2. 2. 0. 2. 0. 2. 2. 0. 2. 2. 0. 2. 0. 2. 0. 0. 0. 0. 2. 0.
 2. 2. 2. 2. 2. 2. 0. 0. 0. 2. 0. 1.]
[[6.68390018 2.94499954]
 [2.28558411 3.23123345]
 [5.0071835  2.44170899]]
[1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 2. 1. 2. 1. 2. 2. 2. 2. 1. 2. 1. 1. 1. 2. 1. 1. 1. 1. 2. 1.
 2. 2. 2. 2. 2. 1. 1. 2. 1. 1. 2. 2. 1. 2. 2. 1. 1. 1. 2. 2. 2. 2. 2. 1.
 1. 2. 2. 2. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 2. 2. 2. 2. 1. 2. 1. 1. 1. 1.
 1. 2. 1. 2. 1. 2. 2. 1. 2. 2. 1. 1. 2. 1. 1. 2. 2. 2. 2. 2. 1. 1. 1. 1.
 1. 2. 1. 1. 2. 1. 1. 1. 0. 0. 0. 2. 2. 0. 0. 2. 2. 2. 0. 0. 0. 0. 0. 2.
 2. 0. 0. 0. 0. 0. 0. 0. 2. 2. 2. 2. 2. 0. 2. 2. 0. 0. 0. 0. 0. 2. 0. 2.
 0. 2. 2. 0. 0. 0. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 2. 0. 2.
 0. 1. 0. 2. 2. 2. 0. 2. 0. 2. 0. 0. 2. 2. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0.
 2. 0. 0. 2. 2. 2. 0. 0. 0. 2. 0. 1.]
[[6.49272845 2.9926145 ]
 [2.11716681 3.6129498 ]
 [4.38057974 1.85041121]]
[1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 2. 2. 2. 1. 2. 2. 2. 2. 1. 2. 2. 1. 1. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 1. 2. 2. 2. 2. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 1. 2. 2. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 1. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 2.
 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 2. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2.
 0. 2. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0.
 0. 2. 0. 2. 2. 0. 0. 2. 0. 2. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 1.]
[[6.23121683 3.03625011]
 [1.90893972 4.6245583 ]
 [3.44146283 1.24700833]]
[1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.
 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 2. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[[6.07115453 3.00350207]
 [1.95399466 5.02557006]
 [3.06584667 1.05078048]]
[1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[[6.03366736 3.00052511]
 [1.95399466 5.02557006]
 [3.04367119 1.01541041]]
[1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[[6.03366736 3.00052511]
 [1.95399466 5.02557006]
 [3.04367119 1.01541041]]
[1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[[6.03366736 3.00052511]
 [1.95399466 5.02557006]
 [3.04367119 1.01541041]]
[1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
[[6.03366736 3.00052511]
 [1.95399466 5.02557006]
 [3.04367119 1.01541041]]
centroids.shape[0]
3

6 绘制各个聚类的图

#画图
cluster1=data.values[np.where(idx==0)[0],:]
cluster1
cluster2=data.values[np.where(idx==1)[0],:]
cluster2
cluster3=data.values[np.where(idx==2)[0],:]
cluster3
array([[3.20360621, 0.7222149 ],
       [3.06192918, 1.5719211 ],
       [4.01714917, 1.16070647],
       [1.40260822, 1.08726536],
       [4.08164951, 0.87200343],
       [3.15273081, 0.98155871],
       [3.45186351, 0.42784083],
       [3.85384314, 0.7920479 ],
       [1.57449255, 1.34811126],
       [4.72372078, 0.62044136],
       [2.87961084, 0.75413741],
       [0.96791348, 1.16166819],
       [1.53178107, 1.10054852],
       [4.13835915, 1.24780979],
       [3.16109021, 1.29422893],
       [2.95177039, 0.89583143],
       [3.27844295, 1.75043926],
       [2.1270185 , 0.95672042],
       [3.32648885, 1.28019066],
       [2.54371489, 0.95732716],
       [3.233947  , 1.08202324],
       [4.43152976, 0.54041   ],
       [3.56478625, 1.11764714],
       [4.25588482, 0.90643957],
       [4.05386581, 0.53291862],
       [3.08970176, 1.08814448],
       [2.84734459, 0.26759253],
       [3.63586049, 1.12160194],
       [1.95538864, 1.32156857],
       [2.88384005, 0.80454506],
       [3.48444387, 1.13551448],
       [3.49798412, 1.10046402],
       [2.45575934, 0.78904654],
       [3.2038001 , 1.02728075],
       [3.00677254, 0.62519128],
       [1.96547974, 1.2173076 ],
       [2.17989333, 1.30879831],
       [2.61207029, 0.99076856],
       [3.95549912, 0.83269299],
       [3.64846482, 1.62849697],
       [4.18450011, 0.45356203],
       [3.7875723 , 1.45442904],
       [3.30063655, 1.28107588],
       [3.02836363, 1.35635189],
       [3.18412176, 1.41410799],
       [4.16911897, 0.20581038],
       [3.24024211, 1.14876237],
       [3.91596068, 1.01225774],
       [2.96979716, 1.01210306],
       [1.12993856, 0.77085284],
       [2.71730799, 0.48697555],
       [3.1189017 , 0.69438336],
       [2.4051802 , 1.11778123],
       [2.95818429, 1.01887096],
       [1.65456309, 1.18631175],
       [2.39775807, 1.24721387],
       [2.28409305, 0.64865469],
       [2.79588724, 0.99526664],
       [3.41156277, 1.1596363 ],
       [3.50663521, 0.73878104],
       [3.93616029, 1.46202934],
       [3.90206657, 1.27778751],
       [2.61036396, 0.88027602],
       [4.37271861, 1.02914092],
       [3.08349136, 1.19632644],
       [2.1159935 , 0.7930365 ],
       [2.15653404, 0.40358861],
       [2.14491101, 1.13582399],
       [1.84935524, 1.02232644],
       [4.1590816 , 0.61720733],
       [2.76494499, 1.43148951],
       [3.90561153, 1.16575315],
       [2.54071672, 0.98392516],
       [4.27783068, 1.1801368 ],
       [3.31058167, 1.03124461],
       [2.15520661, 0.80696562],
       [3.71363659, 0.45813208],
       [3.54010186, 0.86446135],
       [1.60519991, 1.1098053 ],
       [1.75164337, 0.68853536],
       [3.12405123, 0.67821757],
       [2.37198785, 1.42789607],
       [2.53446019, 1.21562081],
       [3.6834465 , 1.22834538],
       [3.2670134 , 0.32056676],
       [3.94159139, 0.82577438],
       [3.2645514 , 1.3836869 ],
       [4.30471138, 1.10725995],
       [2.68499376, 0.35344943],
       [3.12635184, 1.2806893 ],
       [2.94294356, 1.02825076],
       [3.11876541, 1.33285459],
       [2.02358978, 0.44771614],
       [3.62202931, 1.28643763],
       [2.42865879, 0.86499285],
       [2.09517296, 1.14010491],
       [5.29239452, 0.36873298],
       [2.07291709, 1.16763851],
       [0.94623208, 0.24522253],
       [2.73911908, 1.10072284],
       [3.96162465, 2.72025046],
       [3.45928006, 2.68478445]])
centroids
array([[6.03366736, 3.00052511],
       [1.95399466, 5.02557006],
       [3.04367119, 1.01541041]])
import matplotlib.pyplot as plt
fig,axe=plt.subplots(figsize=(6,9))
axe.scatter(cluster1[:,0],cluster1[:,1],s=10,color="red",label="cluster1")
axe.scatter(cluster2[:,0],cluster2[:,1],s=10,color="yellow",label="cluster2")
axe.scatter(cluster3[:,0],cluster3[:,1],s=10,color="green",label="cluster2")
axe.scatter(centroids[:,0],centroids[:,1],s=30,marker="+",c="k")
plt.show()

1

我们跳过的一个步骤是初始化聚类中心的过程。 这可以影响算法的收敛。 我们的任务是创建一个选择随机样本并将其用作初始聚类中心的函数。

7 定义评价函数–即任意一点所在聚类与聚类中心的距离平方和

#定义一个评价函数
def metric_square(X,idx,centroids,k):
    lst_dist=[]
    for i in range(k):
        cluster=X[np.where(idx==i)[0],:]
        dist=np.sum(np.power(cluster-centroids[i,:],2))
        lst_dist.append(dist)
    return sum(lst_dist)
cluster=data.values[np.where(idx==0)[0],:]
centroids[0,:]
array([6.03366736, 3.00052511])
np.sum(np.power(cluster-centroids[0,:],2))
82.48594291556887
#测试该函数
metric_square(data.values,idx,centroids,3)
266.65851965491936

8 使用“肘部法则”选取k值

def selecte_K(X,iter_num):
    dist_arry=[]
    for k in range(1,10):
        centroids,idx=k_means(data.values,k,iter_num)
        dist_arry.append((k,metric_square(X,idx,centroids,k)))
    best_k=sorted(dist_arry,key=lambda item:item[1])[0][0]
    return dist_arry,best_k
dist_arry,best_k=selecte_K(data.values,20)
[294]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
……
[8. 2. 0. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.
 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.
 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.
 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 2. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.
 8. 8. 8. 8. 3. 7. 1. 6. 1. 3. 3. 1. 6. 1. 3. 6. 6. 1. 7. 3. 7. 4. 7. 4.
 7. 1. 7. 1. 1. 3. 3. 7. 4. 3. 7. 7. 4. 3. 3. 4. 4. 4. 1. 7. 1. 7. 7. 7.
 7. 1. 7. 1. 3. 6. 3. 3. 4. 3. 6. 4. 4. 3. 7. 3. 7. 1. 4. 1. 7. 4. 4. 4.
 6. 1. 7. 1. 4. 1. 7. 4. 1. 3. 6. 6. 3. 4. 4. 7. 3. 1. 7. 1. 3. 7. 3. 7.
 4. 7. 4. 4. 1. 4. 6. 4. 0. 0. 5. 0. 0. 0. 5. 2. 2. 2. 5. 5. 0. 5. 0. 2.
 0. 5. 5. 5. 0. 0. 0. 0. 2. 2. 2. 2. 2. 0. 2. 0. 5. 0. 0. 0. 0. 2. 0. 2.
 0. 2. 2. 5. 5. 5. 2. 2. 0. 0. 0. 5. 0. 5. 0. 0. 2. 0. 5. 5. 0. 2. 5. 0.
 5. 7. 5. 2. 2. 0. 0. 2. 5. 2. 0. 0. 0. 2. 0. 2. 5. 0. 5. 5. 0. 0. 0. 5.
 2. 0. 0. 0. 0. 2. 0. 5. 5. 2. 0. 8.]
[[6.03540601 2.90876959]
 [4.17384399 0.81938216]
 [5.05532292 3.11209335]
 [3.06175515 0.75169828]
 [2.30069511 0.99667369]
 [7.04212766 3.02764051]
 [1.44137276 0.97206476]
 [3.35444384 1.35441459]
 [1.95399466 5.02557006]]

9 画张图来可视化选择K

dist_arry
[(1, 1957.654720625167),
 (2, 913.319271474709),
 (3, 266.65851965491936),
 (4, 224.19062208578683),
 (5, 174.7886069689041),
 (6, 157.8269861031051),
 (7, 108.35021878232398),
 (8, 95.72271918958536),
 (9, 139.32120386214484)]
y=[item[1] for item in dist_arry]
plt.plot(range(1,len(dist_arry)+1),y)
[<matplotlib.lines.Line2D at 0x1d875d6e1c0>]

2

10 对任意样本来预测其所属的聚类

### 10 对任意样本来预测其所属的聚类
def predict_cluster(x,centroids):
    lst_dist=[]
    for i in range(centroids.shape[0]):
        dist=np.sum(np.power(x-centroids[i],2))
        lst_dist.append((i,dist))
#     print(lst_dist)
    return sorted(lst_dist,key=lambda item:item[1])[0][0],lst_dist
centroids.shape[0]
3
x=np.array([[1.0,2.0],[1.5,2.5]])
for item in x:
    print(predict_cluster(item,centroids))
    
(2, [(0, 26.33885755045021), (1, 10.064180005080523), (2, 5.146008608810406)])
(2, [(0, 20.80466508259735), (1, 6.584615280794261), (2, 4.586927008121937)])

试试Sklearn

#导入包
from sklearn.cluster import KMeans
#实例化一个聚类对象
estimator = KMeans(n_clusters=3)
#用训练数据来拟合该模型
estimator.fit(data.values)
#对任意一个点进行预测
print(estimator.labels_)
estimator.predict(np.array(x))
[0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 0]

array([1, 1])
#查看每个聚类元素到中心点的距离和
estimator.inertia_
266.6585196549193
estimator.cluster_centers_
array([[1.95399466, 5.02557006],
       [3.04367119, 1.01541041],
       [6.03366736, 3.00052511]])
from sklearn.cluster import KMeans

# '利用SSE选择k'
SSE = []  # 存放每次结果的误差平方和
for k in range(1, 11):
    estimator = KMeans(n_clusters=k)  # 构造聚类器
    estimator.fit(data.values)
    SSE.append(estimator.inertia_)
X = range(1, 11)
plt.figure(figsize=(8, 6))
plt.xlabel('k')
plt.ylabel('SSE')
plt.plot(X, SSE, 'o-')
plt.show()
d:\Users\DELL\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=2.
  warnings.warn(

3

实验1 K-means实现无监督聚类

重新利用鸢尾花数据集来实现无监督的聚类,只读取鸢尾花数据集的前两列数据

from sklearn.datasets import load_iris
iris=load_iris()
data=iris.data[:,:2]
data
array([[5.1, 3.5],
       [4.9, 3. ],
       [4.7, 3.2],
       [4.6, 3.1],
       [5. , 3.6],
       [5.4, 3.9],
       [4.6, 3.4],
       [5. , 3.4],
       [4.4, 2.9],
       [4.9, 3.1],
       [5.4, 3.7],
       [4.8, 3.4],
       [4.8, 3. ],
       [4.3, 3. ],
       [5.8, 4. ],
       [5.7, 4.4],
       [5.4, 3.9],
       [5.1, 3.5],
       [5.7, 3.8],
       [5.1, 3.8],
       [5.4, 3.4],
       [5.1, 3.7],
       [4.6, 3.6],
       [5.1, 3.3],
       [4.8, 3.4],
       [5. , 3. ],
       [5. , 3.4],
       [5.2, 3.5],
       [5.2, 3.4],
       [4.7, 3.2],
       [4.8, 3.1],
       [5.4, 3.4],
       [5.2, 4.1],
       [5.5, 4.2],
       [4.9, 3.1],
       [5. , 3.2],
       [5.5, 3.5],
       [4.9, 3.6],
       [4.4, 3. ],
       [5.1, 3.4],
       [5. , 3.5],
       [4.5, 2.3],
       [4.4, 3.2],
       [5. , 3.5],
       [5.1, 3.8],
       [4.8, 3. ],
       [5.1, 3.8],
       [4.6, 3.2],
       [5.3, 3.7],
       [5. , 3.3],
       [7. , 3.2],
       [6.4, 3.2],
       [6.9, 3.1],
       [5.5, 2.3],
       [6.5, 2.8],
       [5.7, 2.8],
       [6.3, 3.3],
       [4.9, 2.4],
       [6.6, 2.9],
       [5.2, 2.7],
       [5. , 2. ],
       [5.9, 3. ],
       [6. , 2.2],
       [6.1, 2.9],
       [5.6, 2.9],
       [6.7, 3.1],
       [5.6, 3. ],
       [5.8, 2.7],
       [6.2, 2.2],
       [5.6, 2.5],
       [5.9, 3.2],
       [6.1, 2.8],
       [6.3, 2.5],
       [6.1, 2.8],
       [6.4, 2.9],
       [6.6, 3. ],
       [6.8, 2.8],
       [6.7, 3. ],
       [6. , 2.9],
       [5.7, 2.6],
       [5.5, 2.4],
       [5.5, 2.4],
       [5.8, 2.7],
       [6. , 2.7],
       [5.4, 3. ],
       [6. , 3.4],
       [6.7, 3.1],
       [6.3, 2.3],
       [5.6, 3. ],
       [5.5, 2.5],
       [5.5, 2.6],
       [6.1, 3. ],
       [5.8, 2.6],
       [5. , 2.3],
       [5.6, 2.7],
       [5.7, 3. ],
       [5.7, 2.9],
       [6.2, 2.9],
       [5.1, 2.5],
       [5.7, 2.8],
       [6.3, 3.3],
       [5.8, 2.7],
       [7.1, 3. ],
       [6.3, 2.9],
       [6.5, 3. ],
       [7.6, 3. ],
       [4.9, 2.5],
       [7.3, 2.9],
       [6.7, 2.5],
       [7.2, 3.6],
       [6.5, 3.2],
       [6.4, 2.7],
       [6.8, 3. ],
       [5.7, 2.5],
       [5.8, 2.8],
       [6.4, 3.2],
       [6.5, 3. ],
       [7.7, 3.8],
       [7.7, 2.6],
       [6. , 2.2],
       [6.9, 3.2],
       [5.6, 2.8],
       [7.7, 2.8],
       [6.3, 2.7],
       [6.7, 3.3],
       [7.2, 3.2],
       [6.2, 2.8],
       [6.1, 3. ],
       [6.4, 2.8],
       [7.2, 3. ],
       [7.4, 2.8],
       [7.9, 3.8],
       [6.4, 2.8],
       [6.3, 2.8],
       [6.1, 2.6],
       [7.7, 3. ],
       [6.3, 3.4],
       [6.4, 3.1],
       [6. , 3. ],
       [6.9, 3.1],
       [6.7, 3.1],
       [6.9, 3.1],
       [5.8, 2.7],
       [6.8, 3.2],
       [6.7, 3.3],
       [6.7, 3. ],
       [6.3, 2.5],
       [6.5, 3. ],
       [6.2, 3.4],
       [5.9, 3. ]])
iris.target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
plt.scatter(data[:,0],data[:,1],color="blue")
plt.show()

4

#真实的类别长成这样
plt.scatter(data[:,0],data[:,1],c=iris.target)
plt.show()

5

1 定义和调用更新每个样本所属聚类,聚类中心更新,初始化聚类中心的参数

def update_centorids(X,idx,k):
    centorids=np.zeros((k,X.shape[1]))
    for i in range(k):
        index=np.where(idx==i)[0]
        centorids[i]=np.sum(X[index,:],axis=0)/len(index)
    return centorids
def initialize_centroid(X,k):
    np.random.seed(30)
    index_initial=[np.random.randint(1,X.shape[0]) for i in range(k)]
    centorids=np.zeros((k,X.shape[1]))
    print(index_initial)
    for i,j in enumerate(index_initial):
        centorids[i]=X[j,:]
    return centorids

2 定义Kmeans算法获得最终的聚类中心和样本所属聚类索引

def k_means(X,k,iter_num):
    centroids=np.zeros((k,X.shape[1]))
    #初始化聚类中心
    centroids=initialize_centroid(X,k)
    for i in range(iter_num):
        #每个样本找到所属聚类
        idx=find_closest(X,centroids)
        print(idx)
        #更新新的聚类中心
        centroids=update_centorids(X,idx,k)
        print(centroids)
    return centroids,idx
centroids,idx=k_means(data,3,30)
[38, 46, 141]
[1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 0. 1. 1. 1. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0.
 1. 1. 2. 2. 2. 0. 2. 1. 2. 0. 2. 0. 0. 2. 2. 2. 1. 2. 1. 2. 2. 0. 1. 2.
 2. 2. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 1. 2. 2. 2. 1. 0. 0. 2. 2. 0. 1. 1.
 1. 2. 0. 1. 2. 2. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2.]
[[4.9137931  2.78965517]
 [5.29772727 3.44772727]
 [6.50519481 2.93506494]]
[1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 0. 1. 1. 1. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0.
 1. 1. 2. 2. 2. 0. 2. 1. 2. 0. 2. 0. 0. 2. 2. 2. 1. 2. 1. 2. 2. 0. 1. 2.
 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 2. 2. 1. 2. 2. 2. 1. 0. 0. 2. 2. 0. 0. 1.
 1. 2. 0. 1. 2. 2. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2.
 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2.]
[[5.0030303  2.77272727]
 [5.28333333 3.48095238]
 [6.52666667 2.94533333]]
[1. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 0. 1. 1. 1. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 2. 2. 2. 0. 2. 1. 2. 2. 0. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 2. 2. 0. 2. 2. 2. 1. 0. 0. 2. 2. 0. 0. 1.
 0. 2. 0. 0. 2. 2. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2.
 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
 2. 2. 2. 2. 2. 2.]
[[5.0972973  2.77027027]
 [5.2027027  3.56756757]
 [6.51842105 2.94868421]]
[1. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 0. 1. 1. 1. 0. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 2. 2. 2. 0. 2. 0. 0. 2. 0. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 0. 2. 0. 2. 2. 2. 0. 0. 0. 2. 0. 0. 0. 0.
 0. 2. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 2.
 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 0. 2.
 2. 2. 2. 2. 2. 2.]
[[5.22391304 2.77608696]
 [5.16470588 3.61764706]
 [6.58       2.97      ]]
[1. 0. 1. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 0. 1. 1. 1. 0. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 2. 2. 2. 0. 2. 0. 0. 2. 0. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 0. 2. 0. 2. 2. 2. 0. 0. 0. 2. 0. 0. 0. 0.
 0. 2. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 2.
 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 0. 2.
 2. 2. 2. 2. 2. 2.]
[[5.28333333 2.73571429]
 [5.10526316 3.57368421]
 [6.58       2.97      ]]
[1. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 2. 0. 2. 0. 0. 2. 0. 2. 2.
 2. 2. 2. 2. 2. 2. 2. 0. 0. 0. 0. 2. 0. 2. 2. 2. 0. 0. 0. 2. 0. 0. 0. 0.
 0. 2. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 0. 2.
 2. 2. 2. 2. 2. 0.]
[[5.445      2.6725    ]
 [5.04318182 3.50454545]
 [6.61818182 2.99242424]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 2. 0. 2. 0. 0. 0. 0. 0. 2.
 2. 2. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 2. 2. 2. 0. 0. 0. 2. 0. 0. 0. 0.
 0. 2. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 0. 2.
 2. 2. 2. 2. 2. 0.]
[[5.58974359 2.64102564]
 [5.01632653 3.45102041]
 [6.65645161 3.00806452]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0.
 2. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 2. 2. 0. 0. 0. 0. 2. 0. 0. 0. 0.
 0. 2. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 2. 2. 2. 0.]
[[5.65       2.64772727]
 [5.01632653 3.45102041]
 [6.70350877 3.03508772]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 2. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.70408163 2.66122449]
 [5.01632653 3.45102041]
 [6.75384615 3.05961538]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 2. 2. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.72884615 2.68269231]
 [5.01632653 3.45102041]
 [6.79183673 3.06122449]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 2. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.76346154 2.69038462]
 [5.006      3.428     ]
 [6.80208333 3.06875   ]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 2. 2. 2. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0.
 0. 0. 2. 2. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 2. 0. 2. 2. 2. 2. 0. 2. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 2. 0.
 2. 0. 2. 0. 2. 2. 0. 0. 2. 2. 2. 2. 2. 0. 0. 2. 2. 2. 0. 2. 2. 2. 0. 2.
 2. 2. 0. 2. 2. 0.]
[[5.77358491 2.69245283]
 [5.006      3.428     ]
 [6.81276596 3.07446809]]

3 绘制各个聚类的图

#画图
import matplotlib.pyplot as plt
cluster1=data[np.where(idx==0)[0],:]
cluster2=data[np.where(idx==1)[0],:]
cluster3=data[np.where(idx==2)[0],:]
fig,axe=plt.subplots(figsize=(8,6))
axe.scatter(cluster1[:,0],cluster1[:,1],s=10,color="red",label="cluster1")
axe.scatter(cluster2[:,0],cluster2[:,1],s=10,color="yellow",label="cluster2")
axe.scatter(cluster3[:,0],cluster3[:,1],s=10,color="green",label="cluster2")
axe.scatter(centroids[:,0],centroids[:,1],s=30,marker="+",c="k")
plt.show()

6

4 定义评价函数–即任意一点所在聚类与聚类中心的距离平方和

定义一个评价函数

def metric_square(X,idx,centroids,k):
    lst_dist=[]
    for i in range(k):
        cluster=X[np.where(idx==i)[0],:]
        dist=np.sum(np.power(cluster-centroids[i,:],2))
        lst_dist.append(dist)
    return sum(lst_dist)

5 使用“肘部法则”选取k值

def selecte_K(X,iter_num):
    dist_arry=[]
    for k in range(1,10):
        centroids,idx=k_means(data,k,iter_num)
        dist_arry.append((k,metric_square(X,idx,centroids,k)))
    best_k=sorted(dist_arry,key=lambda item:item[1])[0][0]
    return dist_arry,best_k  
dist_arry,best_k=selecte_K(data,10)
y=[item[1] for item in dist_arry]
plt.plot(range(1,len(dist_arry)+1),y)
[38]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0.]
 ……   
[1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 1. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1.
 0. 0. 1. 1. 1. 0. 0. 1. 1. 1. 0. 0. 1. 1. 0. 1. 1. 7. 0. 1. 1. 0. 1. 0.
 1. 0. 8. 6. 8. 5. 4. 5. 6. 7. 4. 7. 7. 6. 5. 6. 5. 8. 5. 5. 4. 5. 6. 4.
 4. 4. 4. 8. 8. 8. 6. 5. 5. 5. 5. 5. 5. 6. 8. 4. 5. 5. 5. 6. 5. 7. 5. 5.
 5. 4. 7. 5. 6. 5. 8. 4. 4. 2. 7. 2. 4. 8. 8. 4. 8. 5. 5. 6. 4. 3. 2. 5.
 8. 5. 2. 4. 8. 8. 4. 6. 4. 2. 2. 3. 4. 4. 4. 2. 6. 6. 6. 8. 8. 8. 5. 8.
 8. 8. 4. 4. 6. 6.]
[[4.71428571 3.16190476]
 [5.24285714 3.66785714]
 [7.51428571 2.87142857]
 [7.8        3.8       ]
 [6.34545455 2.73636364]
 [5.68518519 2.66666667]
 [6.14375    3.14375   ]
 [4.94285714 2.38571429]
 [6.825      3.13      ]]

7

6 对任意样本来预测其所属的聚类

def predict_cluster(x,centroids):
    lst_dist=[]
    for i in range(centroids.shape[0]):
        dist=np.sum(np.power(x-centroids[i],2))
        lst_dist.append((i,dist))
    return sorted(lst_dist,key=lambda item:item[1])[0][0],lst_dist
for item in np.array([[1.0,2.0],[2.4,1.6]]):
    print(predict_cluster(item,centroids))
(1, [(0, 23.266603773584908), (1, 18.08722), (2, 34.94272974196466)])
(1, [(0, 12.574528301886792), (1, 10.132819999999999), (2, 21.646559529198715)])

7 试试SKLERAN

#导入包
from sklearn.cluster import KMeans
estimator = KMeans(n_clusters=3)
estimator.fit(data)
print(estimator.labels_)
print(estimator.predict(np.array([[1.0,2.0],[2.4,1.6]])))
estimator.inertia_
estimator.cluster_centers_
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 0 2 0 2 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
 2 2 2 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2 2 0 2 2 2 2
 2 2 0 0 2 2 2 2 0 2 0 2 0 2 2 0 0 2 2 2 2 2 0 0 2 2 2 0 2 2 2 0 2 2 2 0 2
 2 0]
[1 1]
array([[5.77358491, 2.69245283],
   [5.006     , 3.428     ],
   [6.81276596, 3.07446809]])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/821590.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windwos server 2008 更新环境,且vs_redis 安装失败

KB2919442 下载地址:https://www.microsoft.com/zh-cn/download/confirmation.aspx?id42153 KB2919355 下载地址:https://www.microsoft.com/zh-cn/download/confirmation.aspx?id42153 安装步骤:先安装442,后安装355

C++ 对象的生存期

对象&#xff08;包括简单变量&#xff09;都有诞生和消失的时刻。对象诞生到结束的这段时间就是它的生存期。在生存期内&#xff0c;对象将保持它的状态&#xff08;即数据成员的值&#xff09;&#xff0c;变量也将保持它的值不变&#xff0c;直到它们被更新为止。对象的生存…

windows下安装anaconda、pycharm、cuda、cudnn、PyTorch-GPU版本

目录 一、anaconda安装及虚拟环境创建 1.anaconda的下载 2.Anaconda的安装 3.创建虚拟环境 3.1 环境启动 3.2 切换镜像源 3.3环境创建 3.4 激活环境 3.5删除环境 二、pycharm安装 1.pycharm下载 2.pycharm的安装 三、CUDA的安装 1.GPU版本和CUDA版本、cudnn版本、显卡…

布瑞特单圈绝对值旋转编码器串口数据读取

布瑞特单圈绝对值旋转编码器串口数据读取 数据手册&#xff1a;http://briter.net/col.jsp?id109 (2.1版本RS485说明书通信协议 单圈.pdf) 绝对式编码器为布瑞特BRT38-ROM16384-RT1&#xff0c;采用RS485通信。 该绝对式编码器共有5根线&#xff1a;红、黄、黑、绿、白 由…

解决 MyBatis-Plus + PostgreSQL 中的 org.postgresql.util.PSQLException 异常

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

计算机网络期末复习要点(谢希仁第8版)抱佛脚通用

熬夜苦肝4天&#xff0c;拿下&#xff01; 课本是谢希仁的计算机网络&#xff0c;第8版。 本文原创&#xff01;禁止转载。 复习建议&#xff1a;本博客不一定能涵盖你们考试的重点&#xff0c;所以不是走到穷途末路的同学还是应该多多回归课本&#xff0c;课本每章后面都有…

DRM几个重要的结构体及panel开发

一、DRM Linux下的DRM框架内容众多&#xff0c;结构复杂。本文将简单介绍下开发过程中用到的几个结构体。这几个结构体都在之前文章里面开发DRM驱动时用到的&#xff0c;未用到的暂不介绍。 DRM中的KMS包含Framebuffer、CRTC&#xff0c;ENCODER&#xff0c;CONNECTOR&#xff…

ARM处理器 指令(读写内存、状态寄存器、软中断、协处理器……)

一、数据处理指令1&#xff09;数学运算数据运算指令的格式数据搬移指令立即数伪指令加法指令带进位的加法指令减法指令带借位的减法指令逆向加法指令乘法指令数据运算指令的扩展 2&#xff09;逻辑运算按位与指令按位或指令按位异或指令左移指令右移指令位清零指令 3&#xff…

弱监督语义分割伪标签可视化(把单通道灰度图转为voc格式语义分割标签的彩色形式)

一、目的 以图片2007_001960为例&#xff0c;voc数据集中的原图和对应的语义分割标签分别如下&#xff1a; 图1 图2 图像级标签WSSS任务第一阶段最后生成的pseudo mask如下&#xff1a; 图3 我们的…

【100天精通python】Day22:字符串常用操作大全

目录 专栏导读 一、 字符串常用操作 1 拼接字符串 2 计算字符串长度 3 截取字符串 4 分割合并字符串 5 检索字符串 6 字母的大小写转换 7 去除字符串的空格和特殊字符 8 格式化字符串 二 、字符串编码转换 2.1 使用encode()方法编码 2.2 使用decoder()方法编码 专栏…

深度学习笔记-暂退法(Drop out)

背景 在机器学习的模型中&#xff0c;如果模型的参数太多&#xff0c;而训练样本又太少&#xff0c;训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题&#xff0c;过拟合具体表现在&#xff1a;模型在训练数据上损失函数较小&#xff0c;预…

Grandle安装配置(8.2.1)-windows环境

一、官网地址 https://gradle.org/releases/ 下载链接&#xff1a; https://downloads.gradle.org/distributions/gradle-8.2.1-bin.zip 下载后解压到指定文件夹,实例安装目录为&#xff1a; D:\ProgramFiles\gradle-8.2.1 二、配置环境变量 示例中配置的目录为&#xff1a…

二十一章:PUZZLE-CAM:通过匹配局部和全局特征来改进定位

0.摘要 弱监督语义分割&#xff08;WSSS&#xff09;被引入来缩小从像素级监督到图像级监督的语义分割性能差距。大多数先进的方法是基于类激活图&#xff08;CAM&#xff09;来生成伪标签以训练分割网络。WSSS的主要局限性在于从使用图像分类器的CAM生成伪标签的过程主要集中在…

【测试设计】基于正交法的测试用例设计工具--PICT

目录 前言 下载安装 用例生成 使用示例 具体操作&#xff1a; 资料获取方法 前言 我们都知道成对组合覆盖是一种非常有效的测试用例设计方法&#xff0c;但是实际工作过程中当成对组合量太大&#xff0c;我们往往很难做到有效的用例覆盖。 PICT是微软公司出品的一款成对…

spark-sql数据重复之File Output Committer问题

前言 我们先来回顾下之前介绍过的三种Committer&#xff1a;FileOutputCommitter V1、FileOutputCommitter V2、S3A Committer&#xff0c;其基本代表了整体的演进趋势。 核心代码讲解详细参照&#xff1a;Spark CommitCoordinator 保证数据一致性 OutputCommitter commitTask…

集群部署dolphinscheduler踩坑

本文主要总结一下最新版dolphinscheduler3.1.5的安装过程中遇到的坑。 dolphinscheduler启动报错 Exception in thread "Master-Server" org.springframework.beans.factory.BeanCreationException: Error creating bean with name masterServer: Invocation of in…

先进先出法与加权平均法的比较

加权平均法 加权平均的成本核算方法在计算销货成本和期末库存价值时使用每个库存物料的平均成本。企业将使用以下公式计算每个库存单位&#xff08;在特定会计期间内&#xff09;的平均成本&#xff1a; 平均库存成本 &#xff08;所有采购商品的总成本&#xff09;/&#xff…

Matlab Optimization Toolbox中的遗传算法工具包(GA)

matlab optimization 中使用了GA求解器 默认的是小于等于 找到GA 工具包 找到 APP选择 Optimization Tool 选择Solver ga - Genetic Algorithm 应用GA solver 定义适应度函数(Fitness function)与问题约束(Constraints) example one 优化函数 sin(x) 2 * cos(x)极其重要的…

【原创】IPTVC2实现方案(文末有demo)

前言: 名词解释: IPTVC2, 全称: 央视国际节目定价发布接口规范,标准版本当前最新为2.7.12 附赠资源链接&#xff0c;侵删:规范 规范中提供的样例&#xff0c;实现基于axis1.4(2006的时代宠物) 基于axis1版本的实现参考: Spring boot 集成Axis1.4 &#xff0c;使用wsdd文件发…

C语言每日一题:12《数据结构》相交链表。

题目&#xff1a; 题目链接 思路一&#xff1a; 1.如果最后一个节点相同说明一定有交点。 2.使用两个循环获取一下长度&#xff0c;同时可以获取到尾节点。 3。注意初始化lenA和lenB为1&#xff0c;判断下一个节点是空是可以保留尾节点的。长度会少一个&#xff0c;尾节点没有…