windows下安装anaconda、pycharm、cuda、cudnn、PyTorch-GPU版本

news2025/1/19 8:18:18

目录

一、anaconda安装及虚拟环境创建

1.anaconda的下载

 2.Anaconda的安装

3.创建虚拟环境

 3.1 环境启动

 3.2 切换镜像源

 3.3环境创建

3.4 激活环境

 3.5删除环境

二、pycharm安装

1.pycharm下载

2.pycharm的安装

三、CUDA的安装

1.GPU版本和CUDA版本、cudnn版本、显卡驱动的对应关系

1.1先查看一下自己的显卡

1.2cuda和驱动对照表

1.3下载cuda 

 1.4cuda的安装

四、CUDNN的安装

1.cudnn的下载

1.2cudnn的安装

五、pytorch的安装

1.1使用pytorch官网进行安装

1.2.pytorch验证


一、anaconda安装及虚拟环境创建

1.anaconda的下载

Anaconda官网:https://www.anaconda.com
清华大学开源镜像下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

anaconda可以通过以上两种方式进行下载,通过anaconda的官网下载的是最新版,这里面有个问题是python版本一般是最新的,也就是生成的conda的base环境的python版本是最新的,这个好像是无法降级的,我尝试过很多版本都无法完成,不过不影响大局,我们可以创建自己的环境来安装适合自己版本的python。

 2.Anaconda的安装

这个相对简单,基本就是下一步就可以了,由于安装时没有截图,暂时放一个csdn的链接吧

(121条消息) Anaconda安装教程(超详细版)_安装anaconda_EEdith的博客-CSDN博客

3.创建虚拟环境

由于安装后conda自带的环境可能不适合我们的需要,所以一般是需要创建一个或者多个虚拟环境的。先给出几个常用的命令:

语法功能
conda --version查看conda版本号
python --version查看python版本号
conda info --envs查看虚拟环境列表
conda create -n virtualname pip python=3.6创建虚拟环境,指定python版本号
conda activate virtualname激活虚拟环境
conda deactivate退出虚拟环境
conda remove --name virtualname --all删除虚拟环境

 3.1 环境启动

conda环境是通过开始菜单中的程序启动,具体如下图:

 启动后如下:

 3.2 切换镜像源

直接下载的话会受很多限制,下载速度会非常满,一般需要先切换镜像源,国内镜像源比较多,一般使用比较多的还是清华镜像源,如果有问题可以到网上查找其他的,暂时先放置清华的,具体命令如下:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

切换其它镜像源之前一定要先回复默认,命令如下:

conda config --remove-key channels

 3.3环境创建

 环境创建需要注意的有两点,一个是环境名称,这个可以根据自己的需要设定,第二个是python的版本,我们这里需要安装的是3.7的版本。

conda create -n virtualname pip python=3.7

3.4 激活环境

 3.5删除环境

删除环境的语句也记录一下,后面一定要加all

conda remove -name virtualname --all 

二、pycharm安装

1.pycharm下载

pycharm官网:下载PyCharm:JetBrains为专业开发者提供的Python IDE

关于pycharm的激活暂时在这就不讲了。

2.pycharm的安装

关于pycharm的安装也放个搜到的网址吧。

(121条消息) PyCharm安装教程_小白学CS的博客-CSDN博客

三、CUDA的安装

1.GPU版本和CUDA版本、cudnn版本、显卡驱动的对应关系

1.1先查看一下自己的显卡

nvidia-smi

这里重点关注一下显卡的驱动,后面需要在官网找对应的cuda版本

1.2cuda和驱动对照表

通过下面网址查找对照

CUDA 12.2 Release Notes (nvidia.com)

1.3下载cuda 

进入cuda官网,选择适合自己驱动的cuda版本,我这里开始选择的是12.2,后面经过安装tensorflow和pytorch发现这个版本高了,还要降,所以要提前选择适合自己的才可以,这里暂时以11.8为例。

cuda官网下载:CUDA Toolkit Archive | NVIDIA Developer

 1.4cuda的安装

没有截图,基本就是下一步就可以了,也发一个搜到的网址吧

windows下cuda的安装 - wenglabs - 博客园 (cnblogs.com)

四、CUDNN的安装

1.cudnn的下载

在官网选择对应的cudnn版本,这个版本首先要和cuda对应,然后如果安装tensorflow的话还要和tensorflow对应

官网: cuDNN Download | NVIDIA Developer

cudnn对照: 

tensorflow对照网址:Build from source on Windows  |  TensorFlow (google.cn)

 根据上面的对照找到适合自己的cudnn,然后进行下载

1.2cudnn的安装

下载下来是个压缩包,解压后,里面有三个文件夹,

复制 cuDNN  目录下的文件到 CUDA 的对应版本的目录下,我这安装了几个版本,所以就截了一个11.2的图。

 

 完成后添加环境变量,把C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\lib\x64 加到path 中

五、pytorch的安装

1.1使用pytorch官网进行安装

打开官网,选择对应版本后会自动生成执行语句,在对应的conda环境中执行就可以了。

Start Locally | PyTorch

注意:如果已经安装过pytorch的cpu版本的话需要先手动删除然后再安装,否则会不成功。

1.2.pytorch验证

使用以下语句进行验证,返回为true,则为成功,false的话需要检查驱动和cuda还有cudnn还有torch间的兼容性。

import torch
print(torch.__version__)
print(torch.cuda.is_available())

至此安装完成。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/821582.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

布瑞特单圈绝对值旋转编码器串口数据读取

布瑞特单圈绝对值旋转编码器串口数据读取 数据手册:http://briter.net/col.jsp?id109 (2.1版本RS485说明书通信协议 单圈.pdf) 绝对式编码器为布瑞特BRT38-ROM16384-RT1,采用RS485通信。 该绝对式编码器共有5根线:红、黄、黑、绿、白 由…

解决 MyBatis-Plus + PostgreSQL 中的 org.postgresql.util.PSQLException 异常

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…

计算机网络期末复习要点(谢希仁第8版)抱佛脚通用

熬夜苦肝4天,拿下! 课本是谢希仁的计算机网络,第8版。 本文原创!禁止转载。 复习建议:本博客不一定能涵盖你们考试的重点,所以不是走到穷途末路的同学还是应该多多回归课本,课本每章后面都有…

DRM几个重要的结构体及panel开发

一、DRM Linux下的DRM框架内容众多,结构复杂。本文将简单介绍下开发过程中用到的几个结构体。这几个结构体都在之前文章里面开发DRM驱动时用到的,未用到的暂不介绍。 DRM中的KMS包含Framebuffer、CRTC,ENCODER,CONNECTOR&#xff…

ARM处理器 指令(读写内存、状态寄存器、软中断、协处理器……)

一、数据处理指令1)数学运算数据运算指令的格式数据搬移指令立即数伪指令加法指令带进位的加法指令减法指令带借位的减法指令逆向加法指令乘法指令数据运算指令的扩展 2)逻辑运算按位与指令按位或指令按位异或指令左移指令右移指令位清零指令 3&#xff…

弱监督语义分割伪标签可视化(把单通道灰度图转为voc格式语义分割标签的彩色形式)

一、目的 以图片2007_001960为例,voc数据集中的原图和对应的语义分割标签分别如下: 图1 图2 图像级标签WSSS任务第一阶段最后生成的pseudo mask如下: 图3 我们的…

【100天精通python】Day22:字符串常用操作大全

目录 专栏导读 一、 字符串常用操作 1 拼接字符串 2 计算字符串长度 3 截取字符串 4 分割合并字符串 5 检索字符串 6 字母的大小写转换 7 去除字符串的空格和特殊字符 8 格式化字符串 二 、字符串编码转换 2.1 使用encode()方法编码 2.2 使用decoder()方法编码 专栏…

深度学习笔记-暂退法(Drop out)

背景 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预…

Grandle安装配置(8.2.1)-windows环境

一、官网地址 https://gradle.org/releases/ 下载链接: https://downloads.gradle.org/distributions/gradle-8.2.1-bin.zip 下载后解压到指定文件夹,实例安装目录为: D:\ProgramFiles\gradle-8.2.1 二、配置环境变量 示例中配置的目录为&#xff1a…

二十一章:PUZZLE-CAM:通过匹配局部和全局特征来改进定位

0.摘要 弱监督语义分割(WSSS)被引入来缩小从像素级监督到图像级监督的语义分割性能差距。大多数先进的方法是基于类激活图(CAM)来生成伪标签以训练分割网络。WSSS的主要局限性在于从使用图像分类器的CAM生成伪标签的过程主要集中在…

【测试设计】基于正交法的测试用例设计工具--PICT

目录 前言 下载安装 用例生成 使用示例 具体操作: 资料获取方法 前言 我们都知道成对组合覆盖是一种非常有效的测试用例设计方法,但是实际工作过程中当成对组合量太大,我们往往很难做到有效的用例覆盖。 PICT是微软公司出品的一款成对…

spark-sql数据重复之File Output Committer问题

前言 我们先来回顾下之前介绍过的三种Committer:FileOutputCommitter V1、FileOutputCommitter V2、S3A Committer,其基本代表了整体的演进趋势。 核心代码讲解详细参照:Spark CommitCoordinator 保证数据一致性 OutputCommitter commitTask…

集群部署dolphinscheduler踩坑

本文主要总结一下最新版dolphinscheduler3.1.5的安装过程中遇到的坑。 dolphinscheduler启动报错 Exception in thread "Master-Server" org.springframework.beans.factory.BeanCreationException: Error creating bean with name masterServer: Invocation of in…

先进先出法与加权平均法的比较

加权平均法 加权平均的成本核算方法在计算销货成本和期末库存价值时使用每个库存物料的平均成本。企业将使用以下公式计算每个库存单位(在特定会计期间内)的平均成本: 平均库存成本 (所有采购商品的总成本)/&#xff…

Matlab Optimization Toolbox中的遗传算法工具包(GA)

matlab optimization 中使用了GA求解器 默认的是小于等于 找到GA 工具包 找到 APP选择 Optimization Tool 选择Solver ga - Genetic Algorithm 应用GA solver 定义适应度函数(Fitness function)与问题约束(Constraints) example one 优化函数 sin(x) 2 * cos(x)极其重要的…

【原创】IPTVC2实现方案(文末有demo)

前言: 名词解释: IPTVC2, 全称: 央视国际节目定价发布接口规范,标准版本当前最新为2.7.12 附赠资源链接,侵删:规范 规范中提供的样例,实现基于axis1.4(2006的时代宠物) 基于axis1版本的实现参考: Spring boot 集成Axis1.4 ,使用wsdd文件发…

C语言每日一题:12《数据结构》相交链表。

题目: 题目链接 思路一: 1.如果最后一个节点相同说明一定有交点。 2.使用两个循环获取一下长度,同时可以获取到尾节点。 3。注意初始化lenA和lenB为1,判断下一个节点是空是可以保留尾节点的。长度会少一个,尾节点没有…

【C++修炼之路】多态

👑作者主页:安 度 因 🏠学习社区:StackFrame 📖专栏链接:C修炼之路 文章目录 一、概念二、定义和实现1、虚函数2、虚函数的重写3、多态的构成条件4、重写的例外5、C11 override 和 final6、不能被继承的类7…

RxJava异步编程初探

RxJava 其实就是提供一套异步编程的 API,这套 API 是基于观察者模式的,而且是链式调用的,所以使用 RxJava 编写的代码的逻辑会非常简洁。 RxJava 有以下三个基本的元素: 被观察者(Observable)观察者&…

prometheus+grafana进行服务器资源监控

在性能测试中,服务器资源是值得关注一项内容,目前,市面上已经有很多的服务器资 源监控方法和各种不同的监控工具,方便在各个项目中使用。 但是,在性能测试中,究竟哪些指标值得被关注呢? 监控有…