【并发专题】深入理解并发可见性、有序性、原子性与JMM内存模型

news2025/1/17 23:15:46

目录

  • 课程内容
    • 一、JMM模型
      • 1.什么是JMM模型
      • 2.JMM内存区域模型
      • 3.JMM内存模型与硬件内存架构的关系
      • 4.JMM存在的必要性
      • 5.数据同步八大原子操作
      • 6.指令重排现象与并发编程的可见性,原子性与有序性问题
  • 学习总结

课程内容

一、JMM模型

1.什么是JMM模型

Java内存模型(Java Memory Model简称JMM),它是一种抽象的概念,并不真实存在,它描述的是一组规则或规范,通过这组规范定义了程序中各个变量(包括实例字段,静态字段和构成数组对象的元素)的访问方式
我们知道,JVM运行Java程序的本质,是运行线程。而每个线程创建时JVM都会为其创建一个工作内存(线程栈),用于存储线程私有的数据,而Java内存模型中规定所有变量都存储在主内存,主内存是共享内存区域,所有线程都可以访问,但线程对变量的操作(读取赋值等)必须在工作内存中进行,首先要将变量从主内存拷贝的自己的工作内存空间,然后对变量进行操作,操作完成后再将变量写回主内存,不能直接操作主内存中的变量,工作内存中存储着主内存中的变量副本拷贝,前面说过,工作内存是每个线程的私有数据区域,因此不同的线程间无法访问对方的工作内存,线程间的通信(传值)必须通过主内存来完成。

2.JMM内存区域模型

JMM的内存区域模型不同于JVM内存区域模型,JMM与JVM内存区域的划分是不同的概念层次,更恰当说JMM描述的是一组规则,通过这组规则控制程序中各个变量在共享数据区域和私有数据区域的访问方式,JMM是围绕原子性,有序性、可见性展开的。JMM与JVM内存区域唯一相似点,是都存在共享数据区域和私有数据区域的逻辑概念。在JMM中,主内存属于共享数据区域(从某个程度上讲应该包括了堆和方法区),而工作内存数据线程私有数据区域(线程栈),从某个程度上讲则应该包括程序计数器、虚拟机栈以及本地方法栈。
线程,工作内存,主内存工作交互图(基于JMM规范):
在这里插入图片描述

  • 主内存:主要存储的是Java实例对象,所有线程创建的实例对象都存放在主内存中,不管该实例对象是成员变量还是方法中的本地变量(也称局部变量),当然也包括了共享的类信息、常量、静态变量。由于是共享数据区域,多条线程对同一个变量进行访问可能会发生线程安全问题
  • 工作内存:主要存储当前方法的所有本地变量信息(工作内存中存储着主内存中的变量副本拷贝),每个线程只能访问自己的工作内存,即线程中的本地变量对其它线程是不可见的,就算是两个线程执行的是同一段代码,它们也会各自在自己的工作内存中创建属于当前线程的本地变量,当然也包括了字节码行号指示器、相关Native方法的信息。注意由于工作内存是每个线程的私有数据,线程间无法相互访问工作内存,因此存储在工作内存的数据不存在线程安全问题。
    根据JVM虚拟机规范主内存与工作内存的数据存储类型以及操作方式,对于一个实例对象中的成员方法而言,如果方法中包含本地变量是基本数据类型(boolean,byte,short,char,int,long,float,double),将直接存储在工作内存的帧栈结构中,但倘若本地变量是引用类型,那么该变量的引用会存储在功能内存的帧栈中,而对象实例将存储在主内存(共享数据区域,堆)中。但对于实例对象的成员变量,不管它是基本数据类型或者包装类型(Integer、Double等)还是引用类型,都会被存储到堆区。至于static变量以及类本身相关信息将会存储在主内存中。需要注意的是,在主内存中的实例对象可以被多线程共享,倘若两个线程同时调用了同一个对象的同一个方法,那么两条线程会将要操作的数据拷贝一份到自己的工作内存中,执行完成操作后才刷新到主内存。

模型如下图所示:
在这里插入图片描述

3.JMM内存模型与硬件内存架构的关系

通过对前面的硬件内存架构、Java内存模型以及Java多线程的实现原理的了解,我们应该已经意识到,多线程的执行最终都会映射到硬件处理器上进行执行,但Java内存模型和硬件内存架构并不完全一致。对于硬件内存来说只有寄存器、缓存内存、主内存的概念,并没有工作内存(线程私有数据区域)和主内存(堆内存)之分,也就是说Java内存模型对内存的划分对硬件内存并没有任何影响,因为JMM只是一种抽象的概念,是一组规则,并不实际存在,不管是工作内存的数据还是主内存的数据,对于计算机硬件来说都会存储在计算机主内存中,当然也有可能存储到CPU缓存或者寄存器中,因此总体上来说,Java内存模型和计算机硬件内存架构是一个相互交叉的关系,是一种抽象概念划分与真实物理硬件的交叉(注意对于Java内存区域划分也是同样的道理)
在这里插入图片描述

4.JMM存在的必要性

在明白了Java内存区域划分、硬件内存架构、Java多线程的实现原理与Java内存模型的具体关系后,接着来谈谈Java内存模型存在的必要性。由于JVM运行程序的实体是线程,而每个线程创建时JVM都会为其创建一个工作内存(线程栈),用于存储线程私有的数据,线程与主内存中的变量操作必须通过工作内存间接完成,主要过程是将变量从主内存拷贝的每个线程各自的工作内存空间,然后对变量进行操作,操作完成后再将变量写回主内存,如果存在两个线程同时对一个主内存中的实例对象的变量进行操作就有可能诱发线程安全问题。

举个例子:
假设主内存中存在一个共享变量x,现在有A和B两条线程分别对该变量x=1进行操作,A/B线程各自的工作内存中存在共享变量副本x。
现在A线程想要修改x的值为2,而B线程却想要读取x的值,那么B线程读取到的值是A线程更新后的值2还是更新前的值1呢?答案是,不确定。
B线程有可能读取到A线程更新前的值1,也有可能读取到A线程更新后的值2,这是因为工作内存是每个线程私有的数据区域,而线程A变量x时,首先是将变量从主内存拷贝到A线程的工作内存中,然后对变量进行操作,操作完成后再将变量x写回主内,而对于B线程的也是类似的,这样就有可能造成主内存与工作内存间数据存在一致性问题。假如A线程修改完后正在将数据写回主内存,而B线程此时正在读取主内存,即将x=1拷贝到自己的工作内存中,这样B线程读取到的值就是x=1,但如果A线程已将x=2写回主内存后,B线程才开始读取的话,那么此时B线程读取到的就是x=2,但到底是哪种情况先发生呢?
如以下示例图所示案例:
在这里插入图片描述
以上关于主内存与工作内存之间的具体交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步到主内存之间的实现细节,Java内存模型定义了以下八种操作来完成。

5.数据同步八大原子操作

  1. lock(锁定):作用于主内存的变量,把一个变量标记为一条线程独占状态
  2. unlock(解锁):作用于主内存的变量,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定
  3. read(读取):作用于主内存的变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的load动作使用
  4. load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中
  5. use(使用):作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎
  6. assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋给工作内存的变量
  7. store(存储):作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以便随后的write的操作
  8. write(写入):作用于工作内存的变量,它把store操作从工作内存中的一个变量的值传送到主内存的变量中

如果要把一个变量从主内存中复制到工作内存中,就需要按顺序地执行read和load操作,如果把变量从工作内存中同步到主内存中,就需要按顺序地执行store和write操作。但Java内存模型只要求上述操作必须按顺序执行,而没有保证必须是连续执行。
在这里插入图片描述

6.指令重排现象与并发编程的可见性,原子性与有序性问题

先给大伙说一下,什么是指令重排序。

  1. 原子性:原子性指的是一个操作是不可中断的,即使是在多线程环境下,一个操作一旦开始就不会被其他线程影响。
    在java中,对基本数据类型的变量的读取和赋值操作是原子性操作有点要注意的是,对于32位系统的来说,long类型数据和double类型数据(对于基本数据类型,byte,short,int,float,boolean,char读写是原子操作),它们的读写并非原子性的,也就是说如果存在两条线程同时对long类型或者double类型的数据进行读写是存在相互干扰的,因为对于32位虚拟机来说,每次原子读写是32位的,而long和double则是64位的存储单元,这样会导致一个线程在写时,操作完前32位的原子操作后,轮到B线程读取时,恰好只读取到了后32位的数据,这样可能会读取到一个既非原值又不是线程修改值的变量,它可能是“半个变量”的数值,即64位数据被两个线程分成了两次读取。但也不必太担心,因为读取到“半个变量”的情况比较少见,至少在目前的商用的虚拟机中,几乎都把64位的数据的读写操作作为原子操作来执行,因此对于这个问题不必太在意,知道这么回事即可;
  2. 有序性:有序性是指对于单线程的执行代码,我们总是认为代码的执行是按顺序依次执行的,这样的理解并没有毛病,毕竟对于单线程而言确实如此,但对于多线程环境,则可能出现乱序现象,因为程序编译成机器码指令后可能会出现指令重排现象,重排后的指令与原指令的顺序未必一致,要明白的是,在Java程序中,倘若在本线程内,所有操作都视为有序行为,如果是多线程环境下,一个线程中观察另外一个线程,所有操作都是无序的,前半句指的是单线程内保证串行语义执行的一致性,后半句则指指令重排现象和工作内存与主内存同步延迟现象;
  3. 可见性:理解了指令重排现象后,可见性容易了,可见性指的是当一个线程修改了某个共享变量的值,其他线程是否能够马上得知这个修改的值。对于串行程序来说,可见性是不存在的,因为我们在任何一个操作中修改了某个变量的值,后续的操作中都能读取这个变量值,并且是修改过的新值。
    但在多线程环境中可就不一定了,前面我们分析过,由于线程对共享变量的操作都是线程拷贝到各自的工作内存进行操作后才写回到主内存中的,这就可能存在一个线程A修改了共享变量x的值,还未写回主内存时,另外一个线程B又对主内存中同一个共享变量x进行操作,但此时A线程工作内存中共享变量x对线程B来说并不可见,这种工作内存与主内存同步延迟现象就造成了可见性问题,另外指令重排以及编译器优化也可能导致可见性问题,通过前面的分析,我们知道无论是编译器优化还是处理器优化的重排现象,在多线程环境下,确实会导致程序轮序执行的问题,从而也就导致可见性问题。

学习总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/814189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

eda、gnm、anm究竟是个啥?

安装prody pip install prody -i https://pypi.tuna.tsinghua.edu.cn/simpleeda、anm、gnm eda(essential dynamics analysis) 另一个名字PCA(Principal Component Analysis) 或 NMA(Normal Mode Analysis)。 eda分析可以帮助人们理解生物大分子基本的运动模式和构象变化。…

【JavaSE】Java方法的使用

【本节目标】 1. 掌握方法的定义以及使用 2. 掌握方法传参 3. 掌握方法重载 4. 掌握递归 目录 1.方法概念及使用 1.1什么是方法(method) 1.2 方法定义 1.3 方法调用的执行过程 1.4 实参和形参的关系 2. 方法重载 2.1 为什么需要方法重载 2.2 方法重载概念 3. 递归 3.…

Beyond Compare和git merge、git rebase

文章目录 各个分支线将dev1 rebase进 dev2将dev1 merge进dev2 各个分支线 将dev1 rebase进 dev2 gitTest (dev2)]$ git rebase dev1local: 是rebase的分支dev1remote:是当前的分支dev2base:两个分支的最近一个父节点 将dev1 merge进dev2 gitTest (dev…

SpringBootAdmin介绍

一、SpringBootAdmin 简介 1.1 概述 SpringBootAdmin 是一个非常好用的监控和管理的开源组件,该组件能够将 Actuator 中的信息进行界面化的展示,也可以监控所有 Spring Boot 应用的健康状况,提供实时警报功能。 1.2 功能特性 显示应用程序…

初识DBT以及搭建第一个DBT工程

DBT是什么: 按照官方的说法,DBT 是一个数据转换流编排工具。个人理解就是,DBT是帮你编排SQL用的,你可以按照DBT的结构,构建好一个SQL的pipeline,然后让DBT帮你执行这个pipeline。我这里说的SQL pipeline的意…

Android 面试题 应用程序结构 十

🔥 Intent 传递数据 🔥 Activity、Service、BroadcastReceiver之间的通信载体 Intent 来传递数据。而ContentProvider则是共享文件。 Intent可传递的数据类型: a. 8种基本数据类型(boolean byte char short int long float double…

【雕爷学编程】MicroPython动手做(21)——掌控板之磁场传感器

知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…

hooks复杂前端业务解题之道

hooks 大势所趋 2019年年初,react 在 16.8.x 版本正式具备了 hooks 能力,同年6月;尤雨溪在 vue/github-issues 里提出了关于 vue3 Component API 的提案(vue hooks的基础)。在Vue3的组合式API出现后,githu…

session反序列化+SoapClientSSRF+CRLF

文章目录 session反序列化SoapClientSSRFCRLF前言bestphps revengecall_user_func()方法的特性SSRFCRLF组合拳session反序列化 解题步骤总结 session反序列化SoapClientSSRFCRLF 前言 从一道题分析通过session反序列化出发SoapClientSSRF利用CRLF解题 bestphp’s revenge 首…

计算机毕设 深度学习人体语义分割在弹幕防遮挡上的实现 - python

文章目录 1 课题背景2 技术原理和方法2.1基本原理2.2 技术选型和方法 3 实例分割4 实现效果5 最后 # 1 前言 🚩 深度学习人体语义分割在弹幕防遮挡上的应用 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:3分…

ChatGPT在教育领域的应用:改变学习方式的前沿技术

🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~&#x1f33…

Flutter Add to App 问题记录

前一阵应用中接入了Flutter,使用的是官方的Multiple FlutterEngine管理方案,目前线上运行良好,这里整理一下遇到的问题。 将 Flutter 集成到现有应用整体来说没有什么问题,按照文档的说明结合demo操作就行。接入后多语言&#xf…

【应用层】Http协议总结

文章目录 一、续->Http协议的学习 1.http请求中的get方法和post方法 2.http的状态码 3.http的报头 4.长链接 5.cookie(会话保持)总结 继续上一篇的内容: 上一篇的最后我们讲到了web根目录,知道…

Git的.gitignore文件、标签管理以及给命令起别名

文章目录 1. 前言2. .gitignore文件3. 标签管理4. 给命令起别名 1. 前言 本文主要讲解Git中容易被忽略但比较重要一些知识:.gitignore文件、标签管理以及给命令起别名. 2. .gitignore文件 在新建仓库时,有一个添加.gitignore 模板: .gitignore 是一个用于指定 Git 忽略特定文…

Mysql第四,五连弹

第四弹 一、💛 主键约束(Primary key): 通过这个约束来指定某一个列作为主键(1.非空,2.不能重复) ,主键:一条数据,身份标识(类似于内存地址) 😄&a…

Python爬虫Scrapy(二)_入门案例

入门案例 学习目标 创建一个Scrapy项目定义提取的结构化数据(Item)编写爬取网站的Spider并提取出结构化数据(Item)编写Item Pipelines来存储提取到的Item(即结构化数据) 一、新建项目(scrapy startproject) 在开始爬取之前,必须创建一个新的Scrapy项目。进入自定…

计算机毕设 深度学习人体跌倒检测 -yolo 机器视觉 opencv python

文章目录 0 前言1.前言2.实现效果3.相关技术原理3.1卷积神经网络3.1YOLOV5简介3.2 YOLOv5s 模型算法流程和原理4.数据集处理3.1 数据标注简介3.2 数据保存 5.模型训练 6 最后 0 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题…

[Round#14 Illuminate with your bril]

周末NSS的PWN专题,只作了3个,结束后跟NSS的师傅聊,对方确认了第4题的作法,重作成功。第5题看师傅的WP复现成功。 love 主函数给了个printf,这里可以得到所有地址,并且要求把v4,v5改相等 int __cdecl mai…

Linux 版本的 Abyss Locker 勒索软件针对 VMware ESXi 服务器

Abyss Locker 是最新开发的 Linux 加密器,旨在针对 VMware 的 ESXi 虚拟机平台对企业进行攻击。 随着企业从单个服务器转向虚拟机以实现更好的资源管理、性能和灾难恢复,勒索软件团伙创建了专注于针对该平台的加密器。 随着 VMware ESXi 成为最流行的虚…

UE5 摄像机与NPC重叠阻挡导致视角闪现的解决方法

文章目录 前言问题背景问题剖析摄像机碰撞分析解决方法总结前言 本文基于虚幻5.2.1版本,对摄像机与NPC重叠阻挡导致视角闪现提供一个解决方案,并深入讲解摄像机碰撞原理,提升大家的思维与解决问题的能力。 问题背景 当我们被NPC攻击或者NPC介于摄像机与玩家之间导致摄像机…