大数据课程D7——hadoop的YARN

news2025/1/10 10:47:29

文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州

 ▲ 本章节目的

⚪ 了解YARN的概念和结构;

⚪ 掌握YARN的资源调度流程;

⚪ 了解Hadoop支持的资源调度器:FIFO、Capacity、Fair;

⚪ 掌握YARN的完全分布式结构和常见问题;

⚪ 掌握YARN的服役新节点操作;

一、简介

1. 概述

1. Another Resource Negotiator - 迄今另一个资源调度器) - 负责任务管理和资源调度。

2. YARN是Hadoop2.X开始出现的,也是Hadoop2.X中最重要的特性之一。也正是因为YARN的出现,导致Hadoop1.X和Hadoop2.X不兼容。

3. 产生原因:

a. 内部原因:

Ⅰ. 在Hadoop1.X中,没有YARN的说法,此时MapReduce分为主进程JobTracker和从进程TaskTracker。JobTracker只允许存在1个,容易出现单点故障。

Ⅱ. JobTracker负责对外接收任务,接收到任务之后需要将任务拆分成子任务(MapTask和ReduceTask)。JobTracker拆分完任务之后,将子任务分配给从进程TaskTracker。JobTracker会监控每一个TaskTracker的执行情况。在官方文档中,每一个JobTracker最多能够管理4000个TaskTracker。如果TaskTracker数量过多,导致JobTracker的效率成别下降,甚至于导致JobTracker的崩溃。

b. 外部原因:

Ⅰ. Hadoop产生的时候,市面上并没有太多的大数据框架,因此Hadoop在刚开始涉及的时候,只考虑MapReduce的资源调度问题。

Ⅱ. 后来随着大数据的发展,产生了越来越多的计算框架,很大一部分的框架都是围绕着Hadoop使用,因为Hadoop没有考虑其他框架的资源调度问题,所以这些计算框架就产生了资源调度冲突。

4. YARN的结构:

a. 主进程ResourceManager:

Ⅰ. 负责对外接收请求

Ⅱ. 负责管理NodeManager

Ⅲ. 负责管理ApplicationMaster

b. 从进程NodeManager:

Ⅰ. 执行任务。

Ⅱ. 负责管理本节点上的资源。

c. 辅助进程ApplicationMaster:负责管理具体的子任务。

2. 流程

1. 当ResourceManager收到客户端提交的任务之后,会先将这个任务临时存储下来,等待NodeManager的心跳。

2. 当ResourceManager收到NodeManager的心跳之后,会在心跳响应中将Job任务返回给NodeManager。

3. NodeManager通过心跳响应之后,收到任务之后,就会在本节点内部开启一个ApplicationMaster进程,然后将Job任务交给这个ApplicationMaster处理。

4. ApplicationMaster收到任务之后,会将Job任务来进行拆分,拆分成子任务。例如,如果是一个MapReduce程序,那么拆分成MapTask和ReduceTask。

5. 拆分完成之后,ApplicationMaster会给ResourceManager发送请求申请资源。

6. ResourceManager收到请求之后,将请求交给内部组件ResourceScheduler处理。

7. ResourceScheduler收到请求之后,会将资源的描述封装成一个Container对象返回给ApplicationMaster。

8. ApplicationMaster收到资源之后,会对资源进行二次拆分,分配给具体的子任务,然后将子任务分配到不同的NodeManager上执行,并且ApplicationMaster还会监控这些子任务的执行。

9. 如果子任务执行失败,那么ApplicationMaster监控到之后,会自动的重启这个失败的子任务,或者会自动的将失败的子任务分配到其他的节点上重新执行。

10. 当Job任务结束之后,ApplicationMaster会ResourceManager发送请求,同时请求注销自己。

3. ResourceScheduler - 资源调度器

1. 在Hadoop中,目前为止,支持3种资源调度器:FIFO(先进先出),Capacity(资源容量)以及Fair(公平)。

2. FIFO(先进先出):

a. 在Hadoop2.X中,默认使用是这个资源调度器,但是Hadoop3.X发生变化。

b. 底层会为维系唯一的队列,任务会先进入队列,然后从队列头获取任务,为这个任务分配资源。如果资源不充足的情况下,后入队的任务就会被阻塞。

3. Capacity(资源容量):

a. 在Hadoop3.X中,默认使用的是这个资源调度器。

b. 这个资源调度器中,可以维系多个队列,每一个队列维系FIFO的规则。默认情况下,这个调度器中只有1个队列default。

c. 如果资源调度器中维系了多个队列,那么可以为每一个队列设置资源分配比。在提交任务的时候,可以将任务提交到不同的队列中。

4. Fair(公平资源):

a. 在这个资源调取其中,也可以维系多个队列。

b. 这个队列中可以保证每一个在时间上是相对公平中 - 即任务在队列中是进行轮询的。

 二、完全分布式结构

1. 结构

 2. 常见问题

1. 在第一次关闭Hadoop之前,先修改stop-dfs.sh和stop-yarn.sh中的内容。将start-dfs.sh中添加的内容放到stop-dfs.sh中,将start-yarn.sh中的内容放到stop-yarn.sh中。

2. 在Hadoop集群中,一定要先启动Zookeeper再启动Hadoop。

3. 以后再次启动Hadoop,只需要通过start-all.sh即可启动。

4. 在执行命令的时候,出现了Name or service not known或者UnknownHost之类的异常,那么先检查主机名是否写对;再检查/etc/hostname或者是/etc/hosts文件是否配置正确。

5. 在进行ssh的时候需要输入密码,需要重新进行免密。

6. 在执行命令的时候,出现了command not found,那么先检查命令是否配置正确;然后再检查/etc/profile中的环境变量是否配置正确;最后确定对/etc/profile文件修改之后是否进行了重新生效source。

7. 在格式化的时候,出现了HA is not enabled/HA is not available之类的异常,那么说明Hadoop和当前系统出现了兼容性问题 - 重装系统。

8. 如果执行命令的时候出现了IllegalArgument之类的异常,那么说明命令或者参数写错了。

9. 如果启动之后,发现缺少了QuorumPeerMain,那么Zookeeper启动失败。

10. 如果启动之后,发现缺少了NameNode/DataNode/JournalNode/ DFSZKFailoverController进程,可以试图通过hdfs --daemon start namenode/datanode/journalnode/zkfc来单独这个进程,例如hdfs --daemon start datanode。

11. 如果启动之后,发现缺少了ResourceManager/NodeManage进程,那么可以试图通过yarn --daemon start resourcemanager/nodemanager来单独启动这个进程,例如yarn --daemon start nodemanager。

12. 如果在启动的时候,出现process already running as xxx,那么先kill -9 xxx,然后再单独重新启动。

13. 在NameNode格式化的时候,如果格式化失败,那么改错之后,先删除掉/home/software/hadoop-3.1.3/tmp/dfs/name目录,再重新格式化。

三、扩展

1. 服役新节点

1. 先修改新节点的主机名

vim /etc/hostname

#将主机名改为对应的名字,例如hadoop04

2. 进行主机名和IP的映射

vim /etc/hosts

#需要将所有云主机的IP和主机名都进行映射

cd /etc/

#远程拷贝给其他主机

scp -r hosts root@hadoop01:$PWD

scp -r hosts root@hadoop02:$PWD

scp -r hosts root@hadoop03:$PWD

3. 重启

reboot

4. 配置免密码互通

ssh-keygen

ssh-copy-id root@hadoop01

ssh hadoop01 --- 如果不需要密码,则输入logout

ssh-copy-id root@hadoop02

ssh hadoop02 --- 如果不需要密码,则输入logout

ssh-copy-id root@hadoop03

ssh hadoop03 --- 如果不需要密码,则输入logout

5. 所有的主机都需要和新添加的节点进行免密

ssh-copy-id root@hadoop04

ssh hadoop04 --- 如果不需要密码,则输入logout

6. 从其他节点拷贝一个Hadoop安装目录到第四个节点上

cd /home/software/

scp -r hadoop-3.1.3 root@hadoop04:$PWD

7. 新添加的节点上,进入Hadoop的安装目录,然后删除对应的目录

cd /home/software/hadoop-3.1.3/

rm -rf tmp

rm -rf logs/

8. 新节点配置环境变量

vim /etc/profile

#在文件末尾添加

export HADOOP_HOME=/home/software/hadoop-3.1.3

export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

#保存退出,重新生效

source /etc/profile

9. 启动DataNode

hdfs --daemon start datanode

10. 启动YARN

yarn --daemon start nodemanager

2. Federation HDFS - 联邦HDFS

1. 当前HDFS架构的弊端:

a. NameNode会将元数据维系在内存中。实际开发中,一台服务器大概能腾出50G左右的内存给NameNode来使用,也就意味着一台服务器大概能存储3亿~4亿条元数据,经过计算,意味着NameNode所管理的集群大概能够存储12~15PB的数据。但是在现在的开发中,很多大型企业的数据量已经超过上百PB,原始的NameNode架构就不能满足这个需求。

b. NameNode无法做到程序的隔离。所有的元数据都维系在一个NameNode上,意味着如果某一个任务占用的资源比较多,那么就会影响其他在进行的任务。

c. 所有的请求都只能访问这唯一的一个NameNode,此时NameNode的并发量就成了整个HDFS的并发瓶颈。

2. 在联邦HDFS中,可以利用多个节点同时作为NameNode对外接收请求,在请求之前,需要将HDFS中的路径于NameNode之间来进行映射。每一个路径必须对应某一个NameNode。

3. 在联邦HDFS中,所有的请求不再集中于某一个节点上而是分散到不同的节点上,从而提高了集群的并发量的上限。

4. 因为不同路径分别对应了不同的节点,此时某一个节点上资源被过多的占用,例如节点的磁盘的IO资源占用比较多,并不会影响其他的节点的读写。

5. 因为利用多个NameNode来实现功能,此时元数据也不再集中于一个节点上,而是分散到多个节点上,大大的提高了集群的数据量容纳的上限。

6. 在联邦HDFS中,要求所有的NameNode的BlockPoolID必须一致。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/811992.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python语法(一、基础)

简介 Python 是一个高层次的结合了解释性、交互性和面向对象的脚本语言。解释型语言: 这意味着开发过程中没有了编译这个环节。作为解释型语言,意味着开发过程中没有了编译这个环节,对代码逐行解析。 Python还具有可嵌入性,如Py…

ConcurrentHashMap基本介绍

介绍 ConcurrentHashMap是线程安全且高效的HashMap。 为什么要使用ConcurrentHashMap 线程不安全的HashMap HashMap多线程情况下put操作会出现并发安全问题,包括死循环、数据丢失(jdk7)以及数据覆盖(jdk8)。 jdk7中…

基于stm32单片机的直流电机速度控制——LZW

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 一、实验目的二、实验方法三、实验设计1.实验器材2.电路连接3.软件设计(1)实验变量(2)功能模块a)电机接收信号…

Github git clone 和 git push 特别慢的解决办法

1.在本地上使用 SSH 命令无法git push 上传 github 项目 2.使用 git clone 下载项目特别慢总是加载不了 解决办法1 将 *** 的连接模式换成:D-i-r-e-c-t(好像不太有用) 后面再找找能不能再G-l-o-b-a-l 下解决该问题 解决办法 2 mac下直接设…

Python 日志记录:6大日志记录库的比较

Python 日志记录:6大日志记录库的比较 文章目录 Python 日志记录:6大日志记录库的比较前言一些日志框架建议1. logging - 内置的标准日志模块默认日志记录器自定义日志记录器生成结构化日志 2. Loguru - 最流行的Python第三方日志框架默认日志记录器自定…

SpringBoot内嵌的Tomcat:

SpringBoot内嵌Tomcat源码: 1、调用启动类SpringbootdemoApplication中的SpringApplication.run()方法。 SpringBootApplication public class SpringbootdemoApplication {public static void main(String[] args) {SpringApplication.run(SpringbootdemoApplicat…

python浅浅替代ps?实现更改照片尺寸,以及更换照片底色

前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 如何用代码来p证件照并且更换底色? 有个小姐姐给我扔了张照片,叫我帮忙给她搞成证件照的尺寸还得换底色 可惜电脑上没有ps只有pycharm,但下载又卸载多麻烦呀 于是,我就用代码来…

RT1052 的周期定时器

文章目录 1 PIT 周期中断定时器2 PIT定时器的使用3 PIT定时器配置3.1 PIT 时钟使能。3.1.1 CLOCK_EnableClock 3.2 初始化 PIT 定时器3.2.1 PIT_Init 3.3 设置 通道 0 的 加载值3.3.1 PIT_SetTimerPeriod 3.4 使能 通道 0 的中断3.4.1 PIT_EnableInterrupts 3.5 开启 PIT 定时器…

在登录界面中设置登录框、多选项和按钮(HTML和CSS)

登录框(Input框)的样式: /* 设置输入框的宽度和高度 */ input[type"text"], input[type"password"] {width: 200px;height: 30px; }/* 设置输入框的边框样式、颜色和圆角 */ input[type"text"], input[type&q…

测试|测试分类

测试|测试分类 文章目录 测试|测试分类1.按照测试对象分类(部分掌握)2.是否查看代码:黑盒、白盒灰盒测试3.按开发阶段分:单元、集成、系统及验收测试4.按实施组织分:α、β、第三方测试5.按是否运行代码:静…

100行代码写一个简易QT点名程序

照例演示一下: 分享一个简易的Qt点名程序,满打满算一百行代码(还要什么自行车)。 UI界面比较丑,按钮是自己做的,背景是AI作画生成的,大家可以自行更换背景以及按钮。 内容也是非常的简单,就是…

JWT登录认证

JWT认证流程 跨域认证解决方案,JWT的流程为: 客户端发送账号和密码请求服务端收到请求,验证用户名密码是否通过验证成功后,服务端会生成唯一的token,将其返回给客户端客户端收到token,会将其存储在cookie…

拓扑排序详解(带有C++模板)

目录 介绍: 实现原理: 简答来说: 例子 模板(C) 介绍: 拓扑排序(Topological Sorting)是一种针对有向无环图(DAG)的节点进行排序的算法。DAG是一个图&…

Android 之 使用 MediaRecord 录音

本节引言 本节是Android多媒体基本API调用的最后一节,带来的是MediaRecord的简单使用, 用法非常简单,我们写个例子来熟悉熟悉~ 1.使用MediaRecord录制音频 运行结果: 实现代码: 布局代码:activity_main.…

自动化测试如何做?真实企业自动化测试流程,自动化测试分类...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 企业自动化测试流…

一文讲清楚地图地理坐标系

前言 我最近在做一个和地图有关的项目,这里本人地图采用的是mapbox,其中涉及一个功能需要根据用户输入的地点直接定位到地图上的对应的位置,本人开始想的是直接调用百度的接口根据地名直接获取坐标,发现在地图上的位置有偏移不够…

C++——模板的作用2:特例化

目录 模板的形式: 一.模板的多参数应用: 例: 错误使用1:使用不标准的模板形参表 ​编辑 错误使用2:使用变量作为实参传递给函数模板 二.模板的特例化: 类模板: 针对模板的特化步骤&am…

乌班图22.04安装wireguard实现异地组网

1. 前言: wireguard是新型的异地组网工具,在此之前,又已经被抛弃的pptp,l2tp,有配置复杂的openvpn,wireguard被linux作者linus赞叹优雅,于linux 5.6合并至linux内核主线。 2. 安装过程&#…

文心一言 VS 讯飞星火 VS chatgpt (68)-- 算法导论6.5 7题

文心一言 VS 讯飞星火 VS chatgpt (68)-- 算法导论6.5 7题 七、试说明如何使用优先队列来实现一个先进先出队列,以及如何使用优先队列来实现栈(队列和栈的定义见 10.1 节。) 文心一言: 优先队列是一种数据结构,其中…

干货|一次完整的性能测试,测试人员需要做什么?

作者介绍 邓宝菊(Kiki Deng),10 年软件测试经验,4 年团队管理经验,当前任职研发部架构质量工程部,整体负责研发部测试团队的效能、工具流程建设和人才培养。 前言 一、 规范性能测试实施流程的意义 规范…