进程_PCB 的理解

news2024/11/15 19:28:22

目录

一. PCB 的概念

1. 为什么需要PCB

2. PCB的属性

二. task struct

1. task struct 介绍

2. 查看进程指令

3. PID

4. PPID

父进程是什么?

为什么要有父进程?

5. fork 创建子进程

1) fork 后的现象

为什么会打印两次?

2) 的返回值

getpid petppid

3) fork 如何办到?

三. 总结


一. PCB 的概念

在我们的操作系统中,如果我们想要运行一个程序,那么我们显然是需要将程序加载到内存中的,所以我们可以先不怎么准确的理解一下进程是什么——加载到内存中的程序。

更为官方的概念是这样的,进程 PCB(Process Control Block,进程控制块)是操作系统中用于描述和管理进程的数据结构。每个正在运行的进程都有一个对应的进程 PCB。

那么我们首先谈论一下为什么需要进程

1. 为什么需要PCB

我们前面说了,我们的进程就是一个程序加载到内存,那么我们的系统中显然是不可能只有一个进程的,因为我们需要运行很多软件(进程),所以我们是需要对这么多的进程需要进行管理的,而我们的操作系统如何管理?   先描述再组织。

那么我们如何描述一个进程呢?通过用数据结构来描述进程的特定的属性来描述进程,所以我们用来描述进程的数据结构就叫做PCB,而我们的操作系统也就是通过管理PCB来管理我们的进程。

但是我们上面一直是在说PCB,那么PCB就等于进程吗? 这里说一下,其实PCB并不等于进程,我们说了PCB只是系统给我们创建的一个用来描述进程的控制块,但是我们不仅仅需要用来描述,我们还是需要我们自己程序的代码和数据,所以我们的进程应该是: 进程 = PCB + 代码和数据

根据上面说的,我们的PCB就是用来描述我们的进程的一个控制块,而PCB的作用就是方便操作系统对我们的进程进行管理。 

2. PCB的属性

我们现在知道,PCB就是系统用来描述进程的一个数据结构,那么既然是一个数据结构里面当然是有各种关于进程的属性的,我们下面看一下关于进程的各种属性。

  • 进程标识符(Process ID):用于唯一标识一个进程。
  • 程序计数器(Program Counter):记录当前进程正在执行的指令位置。
  • 寄存器状态(Register State):包括通用寄存器、堆栈指针和程序状态字等寄存器的内容。
  • 进程状态(Process State):表示进程的当前状态,如运行、就绪、等待等。
  • 内存信息:包括进程的代码段、数据段和堆栈段的起始地址和大小。
  • 调度信息:包括进程的优先级、调度算法使用的时间片大小等。
  • 进程控制信息:包括父进程标识符、子进程标识符、打开的文件列表等。

这上面只是笼统的介绍一下,后面会详细说的~

二. task struct

前面说的是大多数操作系统的一个概念,但是如果我们想要学习操作系统,那么我们必须要学习的是一款具体的操作系统,我们这里说的就是 linux

1. task struct 介绍

我们这里说的 task struct 就是 PCB ,而PCB是所有操作系统里面进程的一个叫法,而我们的
task struct 是一款具体的操作系统(linux)里面的PCB的一个叫法。

task struct 里面的属性和PCB里面的都是差不多的,但是肯定是有差别的。

下面我们就先简单的看一下 linux 里面的进程

2. 查看进程指令

指令:ls /proc(查看所有进程)

指令:ps axj (查看所有进程)

我们现在写一个死循环,然后我们执行该程序,在执行的时候我们的该程序会被加载到内存,然后被执行,我们使用命令查看该进程

测试代码:

#include<stdio.h>
#include<unistd.h>

int main()
{
  while(1)
  {
    printf("I am a process...\n");
    sleep(2);
  }
  return 0;
}


上面是 ps axj 查看,下面是 ls /proc查看 

其实这样看的管感并不太好,我们还可以使用 grep 命令来查看

 [lxy@hecs-165234 linux2]$ ps axj | head -1 && ps axj | grep myprocess
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
18563 18611 18611 18563 pts/1    18611 S+    1000   0:00 ./myprocess
18169 18859 18858 18169 pts/0    18858 D+    1000   0:00 grep --color=auto myprocess

前面的那个是为了查看第一行

我们看到,我们查到的内容里面有几个属性,我们这里先值说一个,PID(进程的标识符),也就是在系统中表示唯一的一个进程

既然我们现在知道了PID,那么我们看到 ls /proc查看到的里面的那些数字,其实就是PID

我们可以通过 ls /proc 查看一下我们的 myproc 进程,然后我们关掉我们的程序后在查看一下

[lxy@hecs-165234 linux2]$ ls /proc | grep 18611
18611

[lxy@hecs-165234 linux2]$ ls /proc | grep 18611
[lxy@hecs-165234 linux2]$ 

 我们看到我们第一次查到了,然后关掉程序后就查看不到了

我们继续启动程序,然后我们查看该程序

[lxy@hecs-165234 linux2]$ ps axj | grep myprocess
18563 18940 18940 18563 pts/1    18940 S+    1000   0:00 ./myprocess
18169 18942 18941 18169 pts/0    18941 R+    1000   0:00 grep --color=auto myprocess
[lxy@hecs-165234 linux2]$ ls /proc/18940 -dl
dr-xr-xr-x 9 lxy lxy 0 Jul 12 19:04 /proc/18940
[lxy@hecs-165234 linux2]$ 

我们看到我们的 18940 是一个文件,那么我们打开看一下里面有一些什么内容

lxy@hecs-165234 linux2]$ cd /proc/18940
[lxy@hecs-165234 18940]$ ll
total 0
dr-xr-xr-x 2 lxy lxy 0 Jul 12 19:06 attr
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 autogroup
-r-------- 1 lxy lxy 0 Jul 12 19:06 auxv
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 cgroup
--w------- 1 lxy lxy 0 Jul 12 19:06 clear_refs
-r--r--r-- 1 lxy lxy 0 Jul 12 19:04 cmdline
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 comm
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 coredump_filter
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 cpuset
lrwxrwxrwx 1 lxy lxy 0 Jul 12 19:06 cwd -> /home/lxy/108/linux2
-r-------- 1 lxy lxy 0 Jul 12 19:06 environ
lrwxrwxrwx 1 lxy lxy 0 Jul 12 19:06 exe -> /home/lxy/108/linux2/myprocess
dr-x------ 2 lxy lxy 0 Jul 12 19:04 fd
dr-x------ 2 lxy lxy 0 Jul 12 19:06 fdinfo
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 gid_map
-r-------- 1 lxy lxy 0 Jul 12 19:06 io
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 limits
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 loginuid
dr-x------ 2 lxy lxy 0 Jul 12 19:06 map_files
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 maps
-rw------- 1 lxy lxy 0 Jul 12 19:06 mem
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 mountinfo
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 mounts
-r-------- 1 lxy lxy 0 Jul 12 19:06 mountstats
dr-xr-xr-x 5 lxy lxy 0 Jul 12 19:06 net
dr-x--x--x 2 lxy lxy 0 Jul 12 19:06 ns
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 numa_maps
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 oom_adj
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 oom_score
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 oom_score_adj
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 pagemap
-r-------- 1 lxy lxy 0 Jul 12 19:06 patch_state
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 personality
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 projid_map
lrwxrwxrwx 1 lxy lxy 0 Jul 12 19:06 root -> /
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 sched
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 schedstat
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 sessionid
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 setgroups
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 smaps
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 stack
-r--r--r-- 1 lxy lxy 0 Jul 12 19:04 stat
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 statm
-r--r--r-- 1 lxy lxy 0 Jul 12 19:04 status
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 syscall
dr-xr-xr-x 3 lxy lxy 0 Jul 12 19:06 task
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 timers
-rw-r--r-- 1 lxy lxy 0 Jul 12 19:06 uid_map
-r--r--r-- 1 lxy lxy 0 Jul 12 19:06 wchan

 这里面我们介绍两个字段

  • exe:我们前面说了,我们的程序就是 PCB + 代码和数据,而我们的 exe就是软连接指向我们的代码和数据,而我们的代码和数据就在后面的那条路劲下
  • cwd:我们的一个程序里面其实有一个默认的路劲,就是当前目录,我们的程序在哪里执行,我们的默认当前目录就在哪个目录下

3. PID

在操作系统中,每一个进程都是由自己独立的编号的,而在PCB中进程的编号就是 PID, PID 可以表示某一个操作系统中的特定的一个进程。

现在我们自己编写一个程序,我们的程序之打印 hello world,下面查看该进程的 PID

#include<stdio.h>
#include<unistd.h>


int main()
{
  while(1)
  {
    printf("hello world\n");
    sleep(1);
  }
  return 0;
}

查看进程的前面已经说过了,下面直接查看一下。

[lxy@hecs-165234 linux3]$ ps axj | head -1 && ps axj | grep proc
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
 6468  6552  6552  6468 pts/1     6552 S+    1000   0:00 ./proc

这里使用 head -1 来显示第一行的信息,第一行可以看到 PID 而该进程的 PID 就是 6552

4. PPID

这里先介绍 PPID 是什么,PPID 就是 该进程的父进程。

父进程是什么?

父进程就是创建该进程的进程,就叫做父进程,而在 linux 中,进程的创建时有两种方法的:

  • 第一种就是: ./程序名,然后操作系统会帮助我们将该进程的代码和数据加载到内存中,然后操作系统也会帮我们为该进程创建对应的 tash_struct 
  • 第二种就是:自己创建,操作系统为我们提供一部分接口,而用户就可以使用这一部分接口来手动的创建进程(fork函数)。

所以系统中的进程都是由别的进程创建的,或者是自己手动创建的,而当用户 ./ 执行一个程序的时候其实也是由父进程的,而这个父进程就是 bash 这个之前说过,bash 在 这里就是命令行解释器,当 bash 察觉到我们是要启动一个进程的时候,就是 bash 帮助用户创建进程,而这里的进程的父进程也就是 bash。

下面查看一下刚才的 6468 的进程,这里可以看到就是 bash

[lxy@hecs-165234 linux3]$ ps axj | head -1 && ps axj | grep 6468
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
 6467  6468  6468  6468 pts/1     6468 Ss+   1000   0:00 -bash

为什么要有父进程?

这个我们在下一期说。

5. fork 创建子进程

前面说了, fork 可以创建子进程,那么怎么创建呢?

fork 是一个系统接口,所以如果当我们不明白的时候我们可以使用 man 进程查看该函数的信息。

[lxy@hecs-165234 linux3]$ man 2 fork


NAME
       fork - create a child process

SYNOPSIS
       #include <unistd.h>

       pid_t fork(void);

RETURN VALUE
       On  success, the PID of the child process is returned in the parent, and 0 is
       returned in the child.  On failure, -1 is returned in the  parent,  no  child
       process is created, and errno is set appropriately.

这里没有全部显示出来,想了解的可以自己查看。

这里可以看到,该函数的作用就是创建一个子进程,然后下面就是该函数的返回值和头文件,而该函数成功的话有两个返回值, 一个是给父进程返回子进程的 PID, 另一个是给子进程返回0,如果失败的话,就返回 -1.

下面看一下使用。

1) fork 后的现象

#include<stdio.h>
#include<unistd.h>


int main()
{
  printf("begin....\n");
  fork();
  printf("end....\n");
  sleep(1);
  return 0;
}

运行.... 

[lxy@hecs-165234 linux3]$ ./proc 
begin....
end....
end....

这里是运行后的结果,看到 end 打印的两次。

为什么会打印两次?

第一次解释:

因为 fork 后就会创建一个进程,然后这时候就会有两个执行流执行,所以说 end 被打印了两次

2) 的返回值

这里继续编写一段代码。

 

#include<stdio.h>
#include<unistd.h>
#include<sys/types.h>

int main()
{
  pid_t id = fork();
  if(id == 0)
  {
    // 子进程
    while(1)
    {
      printf("I am a child... \n");
      sleep(1);
    }
  }
  else if(id > 0)
  {
    // 父进程
    while(1)
    {    
      printf("I am a father... \n");
      sleep(1);
    }
  }
  else{
    //创建失败
  }
  return 0;
}

然后我们运行看一下结果。

[lxy@hecs-165234 linux3]$ ./proc 
I am a father... 
I am a child... 
I am a father... 
I am a child... 
I am a father... 
I am a child... 

结果就是我们该程序不仅在打印 father 还在打印 child ,我们该进程不仅进了 if 还进了 else if,所以为什么会有这个现象呢?

下面在看一下查看到的进程。

[lxy@hecs-165234 linux3]$ ps axj | head -1 && ps axj | grep proc
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
 6468  7387  7387  6468 pts/1     7387 S+    1000   0:00 ./proc
 7387  7388  7387  6468 pts/1     7387 S+    1000   0:00 ./proc

这里看到确实是这样,第一个是父进程,第二个是子进程,子进程的 PPID 就是父进程的 PID

在下面开始之前先介绍两个函数。

getpid petppid
NAME
       getpid, getppid - get process identification

SYNOPSIS
       #include <sys/types.h>
       #include <unistd.h>

       pid_t getpid(void);
       pid_t getppid(void);

DESCRIPTION
       getpid()  returns the process ID of the calling process.  (This is often used
       by routines that generate unique temporary filenames.)

这就是两个函数的介绍,我这里在简单介绍一下,这两个函数一个是返回PID 另一个是返回 PPID 其中,谁调用该函数就返回谁的 PID 和 PPID。

这里为什么会有上面的结果:

  • fork 有两个返回值
  • fork  后又两个进程在执行代码

3) fork 如何办到?

概念铺设:进程之间是互相独立的。进程是有自己的代码和数据的,所以进程之间是互不干扰的。

  • fork为何会有两个返回值:首先,我们相信 fork 会帮我们创建好子进程,而fork 是有返回值的,那么当fork执行到 return 的时候主要的逻辑就执行结束了,所以返回之前就已经创建好了,所以就可以返回两个返回值。
  • fork 后为什么一个 id 里面看起来是有两份数据?在 fork 创建进程后,子进程是和父进程共享代码的,因为子进程没有自己独立的代码,而且代码是不会被修改的,所以没有必要拷贝一份代码。
  • 子进程和父进程的数据是“写时拷贝”的,就是当子进程不修改数据的时候,那么和父进程时共用同一份数据,那么当子进程修改数据后,会为子进程单独拷贝该数据到子进程的地址空间里面,所以就实现了由看起来时一份数据,但是存储了两份数值。

三. 总结

  • PCB 就是一个用来描述进程的一个控制块,操作系统通过对 PCB 进行管理来达到对进程进行管理。
  • task_struct 是 linux 中的 PCB,tash_struct 中有很多属性用来描述该PCB中的信息,其中PID 就是该进程控制块的编号,PPID 就是该进程的父进程
  • fork 是用户自己创建进程的一个手段,fork 通过不同的返回值来进行分流达到父进程和子进程可以区分来完成不同的工作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/810903.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用C语言实现插入排序算法

1.设计思路 用插入排序对长度为n的待排序数组A进行排序的伪代码&#xff08;在代码中&#xff0c;A中元素的数目n用A.length来表示&#xff09;。 伪代码如下&#xff1a; INSERTION-SORT(A) for j2 to A.length:keyA[j] //将A[j]插入已排序序列A[1..j-1]ij-1while i>0…

【MTI 6.S081 Lab】Copy-on-write

【MTI 6.S081 Lab】Copy-on-write The problemThe solutionImplement copy-on-write fork (hard)实验任务Hints解决方案问题解决思考uvmcopykfreekallockpagerefcow_handlertrap 虚拟内存提供了一定程度的间接性&#xff1a;内核可以通过将PTE标记为无效或只读来拦截内存引用&a…

Quartz项目搭建与任务执行源码分析

数据库准备 准备一个MySQL数据库&#xff0c;版本为8.0&#xff0c;然后创建一个库&#xff0c;并从quartz官方的版本包中找到名称为tables_mysql_innodb.sql的脚本执行进去&#xff08;脚本内容文后也有提供&#xff09;。 项目依赖说明 创建一个Maven项目&#xff0c;引入…

Python方式实现简易弹道计算机

1 问题 本周无意间刷到了德国豹2A5坦克的火控介绍&#xff0c;想自己编写一个不考虑空气阻力以及测风影响的简易弹道计算机&#xff08;大口径火炮&#xff09;。 2 方法 由高中物理知识了解到&#xff0c;炮弹出膛之后基本就是抛物线列个抛物线方程就好了; 百度得火炮的弹道方…

【Django学习】(十六)session_token认证过程与区别_响应定制

一、认识session与token 这里就直接引用别人的文章&#xff0c;不做过多说明 网络应用中session和token本质是一样的吗&#xff0c;有什么区别&#xff1f; - 知乎 二、token响应定制 在全局配置表中配置 DEFAULT_AUTHENTICATION_CLASSES: [# 指定jwt Token认证rest_framew…

python_day17_多线程

threading模块 import timedef sing():while True:print("唱歌~~~~~~~~~~~~")time.sleep(1)def dance():while True:print("跳舞############")time.sleep(1) if __name__ __main__:sing()dance()此时为单线程 import threading import timedef sing(…

Java 异常处理的使用和思考

概念 异常处理的概念起源于早期的编程语言&#xff0c;如 LISP、PL/I 和 CLU。这些编程语言首次引入了异常处理机制&#xff0c;以便在程序执行过程中检测和处理错误情况。异常处理机制随后在 Ada、Modula-3、C、Python、Java 等编程语言中得到了广泛采用和发展。在 Java 中&a…

迁移学习《Efficient and Robust Pseudo-Labeling for Unsupervised Domain Adaptation》

1 摘要 问题&#xff1a;无监督域适应传统方法将超过一定置信度阈值的数据视为目标域的伪标记数据&#xff0c;因此选择合适的阈值会影响目标性能。 在本文中&#xff0c;提出了一种新的基于置信度的加权方案来获得伪标签&#xff0c;并提出了一种自适应阈值调整策略&#xff0…

oCPC实践录 | oCPC下机制设计变得毫无意义?(2)无声的战争

接上回oCPC实践录 | oCPC下机制设计变得毫无意义&#xff1f;&#xff08;1&#xff09;事出异常必有妖&#xff0c;互联网广告最开始采用的广义第一价格密封拍卖&#xff08;GFP)&#xff0c;对广告主而言&#xff0c;需要不断感知竞争对手的变化&#xff0c;修改报价&#xf…

text-generation-webui加载chatglm2-6b时,报错,要求set the option trust_remote_code=True

背景 使用text-generation-webui加载chatglm2-6b大模型时报错&#xff0c;要求设置option trust_remote_codeTrue&#xff0c;一开始没注意界面&#xff0c;去翻找配置文件&#xff0c;后来发现&#xff0c;就在Model界面&#xff0c;有一个复选框&#xff0c;可以进行设置&am…

IO模型epoll

通过epoll实现一个并发服务器 服务器 #include <stdio.h> #include <string.h> #include <stdlib.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <netinet/ip.h> #include <arpa/inet.h…

【新星计划】STM32F103C8T6 - C语言 - 蓝牙JDY-31-SPP串口通信实验

文章目录 蓝牙技术的发展历史SPP蓝牙串口BLE协议&#xff08;超低功耗应用蓝牙协议&#xff09; 常见通用蓝牙模块JDY-31-SPPHC05/06 Keil 工程开发模版main.c 源文件&#xff1a;接线方式&#xff1a;烧录工具&#xff1a;FlyMcu串口调试工具&#xff1a;XCOM蓝牙调试助手APP …

Yolov8训练自己的数据集合(最新实验数据)

一、安装环境 笔者环境如下&#xff1a; win10 anaconda python3.8二、clone代码 地址如下&#xff0c;可以直接使用git命令进行clone,也可以直接去网站下载 git clone https://github.com/ultralytics/ultralytics代码目录如下所示 三、安装必要的库 其实这里比较重要的是…

java的instanceof操作符

说明 java的instanceof操作符可以用于类型的比较或者模式匹配比较。instanceof关键字左边是对象的引用&#xff0c;右边是引用类型或者模式。 如果instanceof关键字右边是一个引用类型&#xff0c;那么instanceof关键字是一个类型比较操作符。 如果instanceof关键字右边是一个…

6.事件监听(绑定)

6.1事件监听 ●什么是事件? 事件是在编程时系统内发生的动作或者发生的事情 比如用户在网页上单击一个按钮 ●什么是事件监听? 就是让程序检测是否有事件产生&#xff0c;一旦有事件触发&#xff0c;就立即调用一个函数做出响应&#xff0c;也称为绑定事件或者注册事件&…

FL Studio 21官方中文版功能介绍及2023最新下载详细图文安装激活教程。FL Studio 21需要系统配置要求

FL Studio 21版本更新现已发布&#xff0c;在这次更新中优化了很多功能&#xff0c;但这些现在都不重要&#xff0c;FL Studio21版本的这次更新中令人瞩目的更新莫过于对简体中文版的支持了。以前FL Studio只有英文版&#xff0c;想要用上中文版只有用汉化包&#xff0c;而且有…

某信用中心之加速乐实战分析

某信用中心之加速乐实战分析 某信用中心之加速乐实战分析声明逆向目标逆向分析第一层cookie获取第二层cookie获取调试分析JS文件 模拟执行致谢 某信用中心之加速乐实战分析 声明 本文章中所有内容仅供学习交流&#xff0c;抓包内容、敏感网址、数据接口均已做脱敏处理&#x…

【二叉树进阶】搜索二叉树(递归+非递归两种版本详解)

文章目录 前言1. 二叉搜索树的概念2. 二叉搜索树的结构2.1 结点结构2.2 树结构 3. 插入操作&#xff08;非递归&#xff09;3.1 思路分析3.2 代码实现3.3 中序遍历&#xff08;测试用&#xff09; 4. 查找操作&#xff08;非递归&#xff09;4.1 思路分析4.2 代码实现 5. 删除操…

七大经典比较排序算法

1. 插入排序 (⭐️⭐️) &#x1f31f; 思想&#xff1a; 直接插入排序是一种简单的插入排序法&#xff0c;思想是是把待排序的数据按照下标从小到大&#xff0c;依次插入到一个已经排好的序列中&#xff0c;直至全部插入&#xff0c;得到一个新的有序序列。例如&#xff1a;…

Doc as Code (3):业内人士的观点

作者 | Anne-Sophie Lardet 在技术传播国际会议十周年之际&#xff0c;Fluid Topics 的认证技术传播者和功能顾问 Gaspard上台探讨了“docOps 作为实现Doc as Code的中间结构”的概念。在他的演讲中&#xff0c;观众提出了几个问题&#xff0c;我们想分享Gaspard的见解&#x…