背景知识
再谈端口号
端口号(Port)标识了一个主机上进行通信的不同的应用程序;
在TCP/IP协议中, 用 "源IP", "源端口号", "目的IP", "目的端口号", "协议号" 这样一个五元组来标识一个通信(可以通过 netstat -n查看);
端口号范围划分
0 - 1023: 知名端口号, HTTP, FTP, SSH 比特科技 等这些广为使用的应用层协议, 他们的端口号都是固定的.
1024 - 65535: 操作系统动态分配的端口号. 客户端程序的端口号, 就是由操作系统从这个范围分配的.
认识知名端口号(Well-Know Port Number)
ssh服务器, 使用22端口
ftp服务器, 使用21端口
telnet服务器, 使用23端口
http服务器, 使用80端口
https服务器, 使用443
端口号配置文件可以在/etc/services文件查看
netstat
netstat是一个用来查看网络状态的重要工具.
语法:netstat [选项]
功能:查看网络状态
常用选项:
n 拒绝显示别名,能显示数字的全部转化成数字
l 仅列出有在 Listen (监听) 的服务状态
p 显示建立相关链接的程序名
t (tcp)仅显示tcp相关选项
u (udp)仅显示udp相关选项
a (all)显示所有选项,默认不显示LISTEN相关
pidof
在查看服务器的进程id时非常方便.
语法:pidof [进程名]
功能:通过进程名, 查看进程id
xargs:将管道内容拼接到当前指令之后
pidof [任务名] | xargs kill -9
UDP协议
UDP协议端格式
16位UDP长度, 表示整个数据报(UDP首部+UDP数据)的最大长度;
如果校验和出错, 就会直接丢弃;
UDP的特点
类似于发快递:
无连接: 知道对端的IP和端口号就直接进行传输, 不需要建立连接;
不可靠: 没有确认机制, 没有重传机制; 如果因为网络故障该段无法发到对方, UDP协议层也不会给应用层 返回任何错误信息;
面向数据报: 不能够灵活的控制读写数据的次数和数量;(整发整取)
面向数据报
应用层交给UDP多长的报文, UDP原样发送, 既不会拆分, 也不会合并;
用UDP传输100个字节的数据: 如果发送端调用一次sendto, 发送100个字节, 那么接收端也必须调用对应的一次recvfrom, 接收100个 字节; 而不能循环调用10次recvfrom, 每次接收10个字节
UDP协议首部中有一个16位的最大长度. 也就是说一个UDP能传输的数据最大长度是64K(包含UDP首 部).
然而64K在当今的互联网环境下, 是一个非常小的数字. 如果我们需要传输的数据超过64K, 就需要在应用层手动的分包, 多次发送, 并在接收端手动拼装;
TCP协议
TCP全称为 "传输控制协议(Transmission Control Protocol"). 人如其名, 要对数据的传输进行一个详细的控制;
源/目的端口号: 表示数据是从哪个进程来, 到哪个进程去;
32位序号/32位确认号: 控制数据接收和发送;
为什么要有32位序号/32位确认号?
以为TCP是全双工通信。
4位TCP报头长度: 表示该TCP头部有多少个32位bit(有多少个4字节); 所以TCP头部最大长度是15 * 4 = 60(报头总长度 = 4位TCP报头长度 * 4字节)
6位标志位(决定TCP报文类型):
URG(带外数据): (如果数据想插队,越过缓冲区直接被读取)紧急指针(在有效载荷中的偏移量,只有一个字节是紧急数据)是否有效
ACK: 确认数据是否收到(正常通信都会置1)
PSH: 提示接收端应用程序立刻从TCP缓冲区把数据读走
RST: 对方要求重新建立连接; 我们把携带RST标识的称为复位报文段(服务器重启后,客户端发送报文,服务端发带RST的报文,链接复位)
SYN: 请求建立连接(请求握手); 我们把携带SYN标识的称为同步报文段
FIN: 断开连接请求, 我们称携带FIN标识的为结束报文段
16位窗口大小: 填入自己的接收缓冲区剩余空间大小,流量控制
16位校验和: 发送端填充, CRC校验. 接收端校验不通过, 则认为数据有问题. 此处的检验和不光包含TCP首部, 也 包含TCP数据部分.
16位紧急指针: 标识哪部分数据是紧急数据;
40字节头部选项: 暂时忽略;
send和recv通过设置MSG_OOB读取/发送带外数据。
序号是发送端发送的数据段的序号(1~1000,就发1),确认序号是应答收到的数据段的序号+数据大小.(确认序号就是确认你在这个序号之前的数据都被我收到了)
超时重传机制(解决丢包问题)
超时没有接收到ACK应答有两种情况:
1.真的丢了
真的丢了也分为两种情况,正常数据段丢了或者确认数据段丢了。如果是正常数据段丢了,再发一次就行,如果是ACK应答丢了,再发一次之后,接收端再发一次ACK应答就行。
2.还在路上
如果是还在路上,那么重发会产生数据重复问题。
接收端会检验数据段的32位序号,如果重复就丢弃。
超时时间为(2^n) * 500ms
三次握手
为什么是三次握手?
因为链接需要被管理,先描述后组织,维护一个链接有时间成本和空间成本。
一次握手和两次握手可能会有SYN洪水,三次握手是验证全双工通信通畅的最小成本。
四次挥手
如果服务端出现大量的close_wait有两种可能:
1.没有close文件描述符
2.服务器有压力
主动断开连接的乙方为什么要维持一段时间(2 * MSL(60s))的TIME_WAIT状态?
1.保证最后一个ACK被收到
2.有可能在断开时,网络中有滞留的报文
当端口处于TIME_WAIT状态就不能被绑定,要解决这个问题只要在绑定套接字之前加入下面的代码就行:
socklen_t t = 1;
setsockopt(_listen_sock, SOL_SOCKET, SO_REUSEADDR, &t, sizeof(t));
四次挥手也有可能变成三次挥手。
滑动窗口(类似于环形队列)
既然这样一发一收的方式性能较低, 那么我们一次发送多条数据, 就可以大大的提高性能(其实是将多个段的等待时 间重叠在一起了).
那么如果出现了丢包, 如何进行重传? 这里分两种情况讨论.
情况一: 数据包已经抵达, ACK被丢了.
只要最新的ACK(同时确认前面的数据都被成功接收)应答被收到,就可以忽略前面丢失的ACK 。
情况二: 数据包就直接丢了.
当某一段报文段丢失之后, 发送端会一直收到 1001 这样的ACK, 就像是在提醒发送端 "我想要的是 1001" 一样;
如果发送端主机连续三次收到了同样一个 "1001" 这样的应答, 就会将对应的数据 1001 - 2000 重新发送;
这个时候接收端收到了 1001 之后, 再次返回的ACK就是7001了(因为2001 - 7000)接收端其实之前就已 经收到了, 被放到了接收端操作系统内核的接收缓冲区中;
流量控制
因此TCP支持根据接收端的处理能力, 来决定发送端的发送速度. 这个机制就叫做流量控制(Flow Control);
流量控制是通过控制发送缓冲区的滑动窗口大小实现的:
滑动窗口 = min(拥塞窗口, 接收端缓冲区剩余空间)
拥塞控制
网络拥塞状态:由于网络拥堵,发送的报文大量丢失。
少量丢失报文可以通过超时重传机制解决,但如果从宏观来看,由于网络原因造成网络拥塞状态,就不能简单重传。如果只是简单重传只会加重网络拥堵的状况。
为了解决这个问题:TCP引入 慢启动机制, 先发少量的数据,探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据;
拥塞窗口是一个数字,一开始为1.
ssthred(慢启动阈值),拥塞窗口达到ssthred之后线性增长,当线性增长到拥塞状态时,更新拥塞避免阈值,更新ssthred为拥塞避免阈值的一半。
延迟应答
如果接收数据的主机立刻返回ACK应答, 这时候返回的窗口可能比较小.(有赌的成分)
假设接收端缓冲区为1M. 一次收到了500K的数据; 如果立刻应答, 返回的窗口就是500K;
但实际上可能处理端处理的速度很快, 10ms之内就把500K数据从缓冲区消费掉了;
在这种情况下, 接收端处理还远没有达到自己的极限, 即使窗口再放大一些, 也能处理过来;
如果接收端稍微等一会再应答, 比如等待200ms再应答, 那么这个时候返回的窗口大小就是1M;
一定要记得, 窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输 效率; 那么所有的包都可以延迟应答么? 肯定也不是;
数量限制: 每隔N个包就应答一次;
时间限制: 超过最大延迟时间就应答一次;
具体的数量和超时时间, 依操作系统不同也有差异; 一般N取2, 超时时间取200ms;
捎带应答
在延迟应答的基础上, 我们发现, 很多情况下, 客户端服务器在应用层也是 "一发一收" 的. 意味着客户端给服务器说 了 "How are you", 服务器也会给客户端回一个 "Fine, thank you";
那么这个时候ACK就可以搭顺风车, 和服务器回应的 "Fine, thank you" 一起回给客户端
面向字节流
由于缓冲区的存在, TCP程序的读和写不需要一一匹配, 例如:
写100个字节数据时, 可以调用一次write写100个字节, 也可以调用100次write, 每次写一个字节;
读100个字节数据时, 也完全不需要考虑写的时候是怎么写的, 既可以一次read 100个字节, 也可以一次 read一个字节, 重复100次;
粘包问题
tcp的报文需要自己设置协议去把数据包分开。
那么如何避免粘包问题呢? 归根结底就是一句话, 明确两个包之间的边界.
1. 对于定长的包, 保证每次都按固定大小读取即可; 例如上面的Request结构, 是固定大小的, 那么就从缓冲区从头开始按sizeof(Request)依次读取即可;
2. 对于变长的包, 可以在包头的位置, 约定一个包总长度的字段, 从而就知道了包的结束位置;
3. 对于变长的包, 还可以在包和包之间使用明确的分隔符(应用层协议, 是程序猿自己来定的, 只要保证分隔 符不和正文冲突即可);
理解 listen 的第二个参数
对于服务器, listen 的第二个参数设置为 2, 并且不调用 accept
客户端状态正常, 但是服务器端出现了 SYN_RECV 状态, 而不是 ESTABLISHED 状态 这是因为, Linux内核协议栈为一个tcp连接管理使用两个队列:
1. 半链接队列(用来保存处于SYN_SENT和SYN_RECV状态的请求)
2. 全连接队列(accpetd队列)(用来保存处于established状态,但是应用层没有调用accept取走的请求)
而全连接队列的长度会受到 listen 第二个参数的影响. 全连接队列满了的时候, 就无法继续让当前连接的状态进入 established 状态了. 这个队列的长度通过上述实验可知, 是 listen 的第二个参数 + 1.