目录
一:动态数码管模块
1:介绍
2:共阴极和共阳极
A:共阴极
B:共阳极
C:转化表
3:74HC138译码器
4:74HC138译码器控制动态数码管
5:数码管显示完整代码
二:矩阵按键模块
1:介绍
2:原理图
3:矩阵按键代码
一:动态数码管模块
1:介绍
LED数码管:数码管是一种简单、廉价的显示器,是由多个发光二极管封装在一起组成“8”字型的器件;
我们的51单片机的1个数码管就相当于由8个发光二极管封装在一起, 所以我们只需要控制8个发光二极管封就可以实现数码管的显示,这款单片机是共阴极连接
数码管扫描(输出扫描) 原理:显示第1位→显示第2位→显示第3位→……,然后快速循环这个过程,最终实现所有数码管同时显示的效果,节省I/O口
2:共阴极和共阳极
我们这款单片机是共阴极所以我们主要介绍共阳极连接
A:共阴极
1.LED共阴极是指LED灯中的二极管的阴极有一个共同的接点,并且该接点连接在GND端,即处于低电平状态。 我们只需要给它一个高电频(1)就可以点亮他
从高位到低位读取
eg:让第一个数码管显示0
数码管段码表对应的0,1,2,3,4,5,6,7,8,9
unsigned char NixieTable[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};
B:共阳极
LED共阳极是指LED灯中的二极管的阳极有一个共同的接点,并且该接点连接在VCC端,即处于高电平状态。 我们只需要给它一个低电频(0)就可以点亮他
数码管段码表对应的0,1,2,3,4,5,6,7,8,9
unsigned char LED7Code[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82,
0xf8, 0x80, 0x90};
C:转化表
3:74HC138译码器
3个io口控制8位,因为单片机上面的资源有限
通过A0~A2数据的输入来控制Y0~Y7数据的输出;实现 3个io口控制8位,
4:74HC138译码器控制动态数码管
eg:点亮LED8
EDL1对应的是Y7的输出端口,所以只需要控制A,B,C输出Y7即可
从高位到低位读和写; (只需要将二进制转化位10进制的7即可)
P2_4=1;P2_3=1;P2_2=1;//二进制111转化十机制为:7,输出Y7;当用户选择1时点亮LED8
5:数码管显示完整代码
#include <REGX52.H>
unsigned char NixieTable[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};
//延时函数的声明
void Delay(unsigned int xms);
/**
* @brief 数码管的选择和读取
* @param Location:选择那一个数码管; Number:选择显示那个数字(0~9)
* @retval 无
*/
void Nixie(unsigned char Location,Number)
{
switch (Location)
{
case 1:P2_4=1;P2_3=1;P2_2=1;break;//二进制111转化十机制为:7,当用户选择1时点亮LED8
case 2:P2_4=1;P2_3=1;P2_2=0;break;//二进制110转化十机制为:6,当用户选择2时点亮LED7
case 3:P2_4=1;P2_3=0;P2_2=1;break;//二进制101转化十机制为:5,当用户选择3时点亮LED6
case 4:P2_4=1;P2_3=0;P2_2=0;break;//二进制100转化十机制为:4,当用户选择4时点亮LED5
case 5:P2_4=0;P2_3=1;P2_2=1;break;//二进制11(高位补零)转化十机制为:3,当用户选择5时点亮LED4
case 6:P2_4=0;P2_3=1;P2_2=0;break;//二进制10(高位补零)转化十机制为:2,当用户选择6时点亮LED3
case 7:P2_4=0;P2_3=0;P2_2=1;break;//二进制1(高位补零)转化十机制为:1,当用户选择7时点亮LED2
case 8:P2_4=0;P2_3=0;P2_2=0;break;//二进制0(高位补零)转化十机制为:0,当用户选择3时点亮LED1
}
P0=NixieTable[Number]; //段码输出
Delay(1); //显示一段时间
P0=0x00; //段码清0,消影
}
void Delay(unsigned int xms)
{
unsigned char i, j;
while(xms--)
{
i = 2;
j = 239;
do
{
while (--j);
} while (--i);
}
}
void main()
{
while(1)
{
Nixie(1,1); //在数码管的第1位置显示1
Delay(20);
Nixie(2,2); //在数码管的第2位置显示2
Delay(20);
Nixie(3,3); //在数码管的第3位置显示3
Delay(20);
}
}
二:矩阵按键模块
1:介绍
矩阵键盘扫描(输入扫描) 原理:读取第1行(列)→读取第2行(列) →读取第3行(列) → ……,然后快速循环这个过程,最终实现所有按键同时检测的效果,节省I/O口
2:原理图
按下为0;我们使用列扫描,
eg:按下1,5,9,13
1:使他P1端口全部为1
2:1,5,9,13为一列,他们的共同端口为P1^3,显示共同端口为P1^3为0;
3:依次使P1_7, P1_6, P1_5, P1_4为0,
3:矩阵按键代码
#include <REGX52.H>
//声明
void Delay(unsigned int xms)
/**
* @brief 矩阵键盘读取按键键码
* @param 无
* @retval KeyNumber 按下按键的键码值
如果按键按下不放,程序会停留在此函数,松手的一瞬间,返回按键键码,没有按键按下时,返回0
*/
unsigned char MatrixKey()
{
unsigned char KeyNumber=0;
P1=0xFF;
P1_3=0;
if(P1_7==0){Delay(20);while(P1_7==0);Delay(20);KeyNumber=1;}
if(P1_6==0){Delay(20);while(P1_6==0);Delay(20);KeyNumber=5;}
if(P1_5==0){Delay(20);while(P1_5==0);Delay(20);KeyNumber=9;}
if(P1_4==0){Delay(20);while(P1_4==0);Delay(20);KeyNumber=13;}
P1=0xFF;
P1_2=0;
if(P1_7==0){Delay(20);while(P1_7==0);Delay(20);KeyNumber=2;}
if(P1_6==0){Delay(20);while(P1_6==0);Delay(20);KeyNumber=6;}
if(P1_5==0){Delay(20);while(P1_5==0);Delay(20);KeyNumber=10;}
if(P1_4==0){Delay(20);while(P1_4==0);Delay(20);KeyNumber=14;}
P1=0xFF;
P1_1=0;
if(P1_7==0){Delay(20);while(P1_7==0);Delay(20);KeyNumber=3;}
if(P1_6==0){Delay(20);while(P1_6==0);Delay(20);KeyNumber=7;}
if(P1_5==0){Delay(20);while(P1_5==0);Delay(20);KeyNumber=11;}
if(P1_4==0){Delay(20);while(P1_4==0);Delay(20);KeyNumber=15;}
P1=0xFF;
P1_0=0;
if(P1_7==0){Delay(20);while(P1_7==0);Delay(20);KeyNumber=4;}
if(P1_6==0){Delay(20);while(P1_6==0);Delay(20);KeyNumber=8;}
if(P1_5==0){Delay(20);while(P1_5==0);Delay(20);KeyNumber=12;}
if(P1_4==0){Delay(20);while(P1_4==0);Delay(20);KeyNumber=16;}
return KeyNumber;
}
void Delay(unsigned int xms)
{
unsigned char i, j;
while(xms--)
{
i = 2;
j = 239;
do
{
while (--j);
} while (--i);
}
}