opencv-24 图像几何变换03-仿射-cv2.warpAffine()

news2024/11/24 9:04:05

什么是仿射?

仿射变换是指图像可以通过一系列的几何变换来实现平移、旋转等多种操作。该变换能够
保持图像的平直性和平行性。平直性是指图像经过仿射变换后,直线仍然是直线;平行性是指 图像在完成仿射变换后,平行线仍然是平行线。

OpenCV 中的仿射函数为 cv2.warpAffine(),其通过一个变换矩阵(映射矩阵)M 实现变换,
具体为:
dst(𝑥, 𝑦) = src(𝑀11𝑥 + 𝑀12𝑦 + 𝑀13, 𝑀21𝑥 + 𝑀22𝑦 + 𝑀23)
如图 5-2 所示,可以通过一个变换矩阵 M,将原始图像 O 变换为仿射图像 R

在这里插入图片描述
因此,可以采用仿射函数 cv2.warpAffine()实现对图像的旋转,该函数的语法格式如下:

dst = cv2.warpAffine( src, M, dsize[, flags[, borderMode[, borderValue]]] )

式中:
dst 代表仿射后的输出图像,该图像的类型和原始图像的类型相同。

dsize 决定输出图像的实际大小。

src 代表要仿射的原始图像。

M 代表一个 2×3 的变换矩阵。使用不同的变换矩阵,就可以实现不同的仿射变换。

dsize 代表输出图像的尺寸大小。

flags 代表插值方法,默认为 INTER_LINEAR。当该值为 WARP_INVERSE_MAP 时,
意味着 M 是逆变换类型,实现从目标图像 dst 到原始图像 src 的逆变换。
 borderMode 代表边类型, 默认为 BORDER_CONSTANT 。 当 该值为 BORDER_TRANSPARENT 时,意味着目标图像内的值不做改变,这些值对应原始图像内的异常
值。
 borderValue 代表边界值,默认是 0。
通过以上分析可知,在 OpenCV 中使用函数 cv2.warpAffine()实现仿射变换,忽略其可选参数后的语法格式为:

dst = cv2.warpAffine( src , M , dsize )

其通过转换矩阵 M 将原始图像 src 转换为目标图像 dst:

dst(𝑥, 𝑦) = src(𝑀11𝑥 + 𝑀12𝑦 + 𝑀13, 𝑀21𝑥 + 𝑀22𝑦 + 𝑀23)

因此,进行何种形式的仿射变换完全取决于转换矩阵 M。下面分别介绍通过不同的转换矩阵 M 实现的不同的仿射变换。

平移

通过转换矩阵 M 实现将原始图像 src 转换为目标图像 dst:
dst(𝑥, 𝑦) = src(𝑀11𝑥 + 𝑀12𝑦 + 𝑀13, 𝑀21𝑥 + 𝑀22𝑦 + 𝑀23)
将原始图像 src 向右侧移动 100 个像素、向下方移动 200 个像素,则其对应关系为:
dst (x, y) = src (x + 100, y + 200)
将上述表达式补充完整,即:
dst (x, y) = src (1·x + 0·y + 100, 0·x + 1·y + 200)
根据上述表达式,可以确定对应的转换矩阵 M 中各个元素的值为:
 M11=1
 M12=0
 M13=100
 M21=0
 M22=1
 M23=200
将上述值代入转换矩阵 M,得到:

在这里插入图片描述
在已知转换矩阵 M 的情况下,可以直接利用转换矩阵 M 调用函数 cv2.warpAffine() 完成图像的平移。

实验:利用自定义转换矩阵完成图像平移。

import cv2
import numpy as np
img=cv2.imread("lena.png")
height,width=img.shape[:2]
x=100
y=200
M = np.float32([[1, 0, x], [0, 1, y]])
move=cv2.warpAffine(img,M,(width,height))
cv2.imshow("original",img)
cv2.imshow("move",move)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:
在这里插入图片描述
其中左图是原始图像,右图是移动结果图像

旋转

在使用函数 cv2.warpAffine()对图像进行旋转时,可以通过函数 cv2.getRotationMatrix2D()
获取转换矩阵。该函数的语法格式为:

retval=cv2.getRotationMatrix2D(center, angle, scale)

式中:
 center 为旋转的中心点。
 angle 为旋转角度,正数表示逆时针旋转,负数表示顺时针旋转。
 scale 为变换尺度(缩放大小)。

利用函数 cv2.getRotationMatrix2D()可以直接生成要使用的转换矩阵 M。

例如,想要以图像中心为圆点,逆时针旋转 45°,并将目标图像缩小为原始图像的 0.6 倍,则在调用函数
cv2.getRotationMatrix2D()生成转换矩阵 M 时所使用的语句为:

M=cv2.getRotationMatrix2D((height/2,width/2),45,0.6)


实验2:完成图像旋转

代码:

import cv2
import numpy as np
img=cv2.imread("lena.png")
height,width=img.shape[:2]
M=cv2.getRotationMatrix2D((width/2,height/2),45,0.6)
rotate=cv2.warpAffine(img,M,(width,height))
cv2.imshow("original",img)
cv2.imshow("rotation",rotate)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述
其中左图是原始图像,右图是旋转结果图像

更复杂的仿射变换

对于更复杂仿射变换,OpenCV 提供了
函数 cv2.getAffineTransform()来生成仿射函数 cv2.warpAffine()所使用的转换矩阵 M。该函数的语法格式为:

retval=cv2.getAffineTransform(src, dst)

式中:
 src 代表输入图像的三个点坐标。
 dst 代表输出图像的三个点坐标。
在该函数中,其参数值 src 和 dst 是包含三个二维数组(x, y)点的数组。上述参数通过函数
cv2.getAffineTransform()定义了两个平行四边形。src 和 dst 中的三个点分别对应平行四边形的
左上角、右上角、左下角三个点。函数 cv2.warpAffine()以函数 cv2.getAffineTransform()获取的
转换矩阵 M 为参数,将 src 中的点仿射到 dst 中。函数 cv2.getAffineTransform()
对所指定的点完成映射后,将所有其他点的映射关系按照指定点的关系计算确定。

实验3:完成图像仿射

import cv2
import numpy as np
img=cv2.imread('lena.png')
rows,cols,ch=img.shape
#定义三个点
p1=np.float32([[0,0],[cols-1,0],[0,rows-1]])

print(p1)
#定义三个点的变换位置
p2=np.float32([[0,rows*0.33],[cols*0.85,rows*0.25],[cols*0.15,rows*0.7]])
print(p2)
#生成变换矩阵
M=cv2.getAffineTransform(p1,p2)
#进行仿射变换
dst=cv2.warpAffine(img,M,(cols,rows))
cv2.imshow("origianl",img)
cv2.imshow("result",dst)
cv2.waitKey()
cv2.destroyAllWindows()

首先构造了两个三分量的点集合 p1 和 p2,分别用来指代原始图像和目标图像内平行四边形的三个顶点(左上角、右上角、左下角)。
然后使用
M=cv2.getAffineTransform(p1,p2)
获取转换矩阵 M。接下来,
dst=cv2.warpAffine(img,M,(cols,rows))
完成了从原始图像到目标图像的仿射。

运行结果:

其中左图是原始图像,右图是仿射结果图像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/792280.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android 耗时分析(adb shell/Studio CPU Profiler/插桩Trace API)

1.adb logcat 查看冷启动时间和Activity显示时间: 过滤Displayed关键字,可看到Activity的显示时间 那上面display后面的是时间是指包含哪些过程的时间呢? 模拟在Application中沉睡1秒操作,冷启动情况下: 从上可知&…

Python小练习实践

在交互模式下,可以不写print;默认调用 print(repr(a)) 文件模式,必须写print。 If语句 Input语句,返回的是字符串 len(),长度 小练习: 输入一个自己的生日月份 写个if 和else 判断一下当月是否是你的生日…

celery----异步发送短信

1.目录结构 -celery.py --------必须叫这个名字 放定时任务、里面实例化得到app对象 -home_task.py和user_task.py. ----------就是针对不同app的任务文件 2.各文件的内容 celery.py from datetime import timedeltafrom celery import Celery from celery.schedu…

PLL设计-仿真

线性相位裕锁相环模型 out都代表噪声,PFDCP的gain是Icp/2π,LF的传输函数是,VCO传输函数是,分频器增益是1/N 首先不考虑噪声模型 阶跃响应-查看建立时间,下面两条线是上面两条线减1V后的结果,方便查看。 放大上图,输入…

支持向量机(SVM)---代码实现

# coding: utf-8## 感知器模型流程 """1.初始化w, b2.遍历所有训练数据集中选出的误分类点&#xff1a;2.1.如果y ! sign(wxb) 或者 y*(wxb) < 0 则为误分类点2.2 根据误分类点计算&#xff1a;w_new w_old -alpha * 对w的梯度&#xff0c; b_new b_old - …

共聚焦显微镜在光学膜片表面微结构测量中的应用

在当前的液晶显示器行业&#xff0c;TFT液晶面板因其显示反应速度更快更适用于动画及显像显示的特点而得到广泛应用。作为配套组件的背光显示模组&#xff0c;为其供应充足且分布均匀的光源亮度&#xff0c;使得液晶面板的显像功能能够正常工作。液晶面板消费需求的不断增长带动…

【vue3】获取字典数据,封装为公共方法

前言: 后台项目中基本上都有字典管理页面,Vue封装字典数据的主要目的是为了方便数据的管理和使用 不管在哪个页面使用下拉框,el-select的options数据源需要通过调用接口获取到,不同的数据源调用不同的接口,引入和使用都是不小的工作量,如果使用字典数据管理,不管同个页…

(打造透明屏展厅全攻略)如何打造透明OLED显示屏展厅?

透明OLED显示屏是一种具有透明度的显示屏幕&#xff0c;可以在不使用时完全透明&#xff0c;从而实现空间与显示的完美融合。在展厅设计中&#xff0c;透明OLED显示屏可以带来全新的视觉体验&#xff0c;使展品更加生动、立体&#xff0c;展示效果更佳。下面是打造透明OLED显示…

Hi3536网络应用调优

目录 1. 为什么UDP接收或发送会丢包? 2. 使用 socket 接口时&#xff0c;如何正确工作在非阻塞模式下&#xff1f; 3. TOE 使能及使用注意事项 4. TOE 模式下使用 socket 接口时的注意事项 1. 为什么UDP接收或发送会丢包? 用户态应用程序在接收 UDP 数据时&#xff0…

什么是SVM算法?硬间隔和软间隔的分类问题

SVM全称是supported vector machine(支持向量机)&#xff0c;即寻找到一个超平面使样本分成两类&#xff0c;并且间隔最大。 SVM能够执行线性或⾮线性分类、回归&#xff0c;甚至是异常值检测任务。它是机器学习领域最受欢迎的模型之一。SVM特别适用于中小型复杂数据集的分类。…

梯度提升树的基本思想

目录 1. 梯度提升树 VS AdaBoost 2. GradientBoosting回归与分类的实现 2.1 GradientBoosting回归 2.2 GradientBoosting分类 1. 梯度提升树 VS AdaBoost 梯度提升树&#xff08;Gradient Boosting Decision Tree&#xff0c;GBDT&#xff09;是提升法中的代表性算法&#…

kali中的一些工具简单使用dirb、netdiscover、ffuf、nmap、sqlmap、hydra、msfconsole

kali渗透常用工具 dirbnetdiscover介绍 ffuf介绍 nmap介绍 sqlmaphydra介绍 msfconsolemsfconsole上线windows dirb dirb <目标URL> <字典文件> [选项] <目标URL>&#xff1a;要扫描的目标URL&#xff0c;例如&#xff1a;http://example.com。 <字典文件…

nodeiis部署步骤

用nodejs写了一个express框架的接口&#xff0c;记录一下它如何在iis上发布部署 nodeiis部署步骤 第一步 安装nodejs 安装步骤&#xff1a;略确认安装结果&#xff1a;在cmd执行命令node -v效果图 第二步 安装iisnode 下载地址&#xff1a;iisnode下载地址&#xff08;htt…

Sentinel针对IP限流

改造限流策略的针对来源选项 import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.RequestOriginParser; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration;Configuration public class Senti…

php 中文字符串反转【字符串】

场景&#xff1a;英文字符串反转 使用 方法 strrev($str) ,但是中文字符串怎么反转呢&#xff1f; 代码 /*** 多字符 字符串反转* param string $string 字符串* param string $encoding 编码* php > 7.4 否则需要实现 mb_str_split 多字符变成字符串*/ function mb_str…

【雕爷学编程】Arduino动手做(88)---水流量传感器模块4

37款传感器与执行器的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&am…

Centos7安装cloudreve+onlyoffice

Centos7安装cloudreveonlyoffice 1.安装onlyoffice 1.1 安装onlyoffice镜像 docker run -i -t -d -p 801:80 --restartalways -e JWT_ENABLEDfalse --name onlyoffice \-v /home/xxx/important_onlyoffice/logs:/var/log/onlyoffice \-v /home/xxx/important_onlyoffice/dat…

Linux搭建Promtail + Loki + Grafana 轻量日志监控系统

一、简介 日志监控告警系统&#xff0c;较为主流的是ELK&#xff08;Elasticsearch 、 Logstash和Kibana核心套件构成&#xff09;&#xff0c;虽然优点是功能丰富&#xff0c;允许复杂的操作。但是&#xff0c;这些方案往往规模复杂&#xff0c;资源占用高&#xff0c;操作苦…

可视化时序输入与输出|python

请帮我生成可视化图的python代码&#xff0c;输入是xxx变量&#xff0c;输出是xxx变量&#xff0c;横坐标是时间&#xff0c;输入用蓝线表示&#xff0c;输出用黄线表示&#xff0c;然后输入和输出在时间维度上是分别一个在前&#xff0c;一个在后。 import matplotlib.pyplot…

安全狗深度参与编写的《云原生安全配置基线规范》正式发布!

7月25日&#xff0c;由中国信息通信研究院、中国通信标准化协会主办的2023可信云大会在北京顺利开幕。 作为国内云原生安全领导厂商&#xff0c;安全狗受邀出席此次活动。 厦门服云信息科技有限公司&#xff08;品牌名&#xff1a;安全狗&#xff09;成立于2013年&#xff0c…