Centos7 扩容(LVM 和非 LVM)

news2025/1/10 21:55:10

 一、磁盘扩容方式

CentOS 系统的磁盘扩容可以分为两种方式:LVM 管理和非 LVM 管理。

        LVM 管理的分区和传统分区方式是可以共存的。在同一个系统中,你可以同时使用 LVM 管理的分区和传统分区。

        例如,在 CentOS 系统中,你可以选择将某些磁盘或分区划分为 LVM 的物理卷(Physical Volume),然后将这些物理卷组合成一个卷组(Volume Group)。从卷组中可以划分出逻辑卷(Logical Volume),并在逻辑卷上创建文件系统。这些 LVM 管理的分区可以用于挂载各种目录,例如根目录 //home/var 等。

        同时,你也可以将其他磁盘或分区使用传统的分区方案,例如使用 fdisk parted 创建传统分区,然后在这些分区上创建文件系统,并挂载到其他目录中。

LVM 方式:

  • /dev/sda:使用 LVM 管理的磁盘
    • /dev/sda1:LVM 物理卷
      • Volume Group(VG):centos
        • Logical Volume(LV):centos-root(用于根文件系统)
        • Logical Volume(LV):centos-home(用于用户家目录)

传统分区方式:

  • /dev/sdb:使用传统分区的磁盘
    • /dev/sdb1:传统分区(例如,用于数据存储)

        以上是一个简单的例子,展示了在同一台计算机上使用 LVM 和传统分区方案共存的情况。两种分区方式各自有自己的优势和适用场景,根据实际需求可以选择灵活地配置磁盘和分区。 

二、常用命令

1、查看系统块设备信息:lsblk 或者  lsblk -l
NAME               MAJ:MIN RM  SIZE RO TYPE MOUNTPOINT
sda                  8:0    0   50G  0 disk 
├─sda1               8:1    0  500M  0 part /boot
├─sda2               8:2    0    1K  0 part 
└─sda5               8:5    0 49.5G  0 part 
  ├─centos-root   253:0    0   20G  0 lvm  /
  ├─centos-swap   253:1    0    2G  0 lvm  [SWAP]
  └─centos-home   253:2    0 27.5G  0 lvm  /home
sdb                  8:16   0  100G  0 disk 
└─sdb1               8:17   0  100G  0 part /data

        在上面的lsblk 命令输出示例中,显示了两个磁盘:sda 和 sdb。sda 磁盘包含多个分区,其中 sda1 是传统分区用于 /boot,而 sda5 是使用 LVM 管理的分区,包含了逻辑卷 centos-root、centos-swap 和 centos-home。sdb 磁盘包含了一个传统分区 sdb1,它被挂载在 /data 目录下。

NAME  MAJ:MIN RM  SIZE RO TYPE MOUNTPOINT
sda     8:0    0   50G  0 disk
sda1    8:1    0  500M  0 part /boot
sda5    8:5    0 49.5G  0 part
sdb     8:16   0  100G  0 disk
sdb1    8:17   0  100G  0 part /data

        在上面的lsblk -l 命令示例输出中,只显示了设备的名称(NAME)、主设备号和次设备号(MAJ:MIN)、设备类型(RM)、大小(SIZE)、是否只读(RO)、设备类型(TYPE)和挂载点(MOUNTPOINT)信息。

2、查看分区表信息:sudo fdisk -l

3、查看挂载信息:df -Th

4、查看 LVM 逻辑卷信息:sudo lvdisplay 或者 sudo lvs

5、查看卷组列表:sudo vgs
   查看详细信息:sudo vgs -v

三、LVM方式

LVM根分区扩容         

根目录扩容(添加一块磁盘扩容根目录)

一篇看懂!Linux磁盘的管理(分区、格式化、挂载),LVM逻辑卷,RAID磁盘阵列

1.查看现有分区

df -Th

2.关机新增磁盘空间(测试环境使用的Vmware Workstation)

3. 查看扩容后磁盘大小

lsblk

4.创建分区

fdisk /dev/sda

5.刷新分区并创建物理卷

partprobe /dev/sda
pvcreate /dev/sda3

6.查看卷组名称,以及卷组使用情况

vgdisplay

7.将物理卷扩展到卷组

vgextend centos /dev/sda3

8.查看当前逻辑卷的空间状态

lvdisplay

vgdisplay

9.将卷组中的空闲空间扩展到根分区逻辑卷

lvextend -l +100%FREE /dev/centos/root

10.刷新根分区

xfs_growfs /dev/centos/root

四、非LVM方式

非LVM根分区扩容

CentOS7,非LVM根分区扩容步骤

非LVM根分区扩容步骤

1.查看现有的分区大小

[root@localhost ~]# df -Th
文件系统                类型      容量  已用  可用 已用% 挂载点
/dev/mapper/centos-root xfs        56G  1.2G   54G    3% /
devtmpfs                devtmpfs  2.0G     0  2.0G    0% /dev
tmpfs                   tmpfs     2.0G     0  2.0G    0% /dev/shm
tmpfs                   tmpfs     2.0G   12M  2.0G    1% /run
tmpfs                   tmpfs     2.0G     0  2.0G    0% /sys/fs/cgroup
/dev/sdb1               xfs        20G   33M   20G    1% /root/RepositoryDisk
/dev/sda1               xfs      1014M  133M  882M   14% /boot
tmpfs                   tmpfs     394M     0  394M    0% /run/user/0

根据提供的文件系统信息,可以看出以下关于磁盘空间的信息:

  1. /dev/mapper/centos-root 是使用 LVM 管理的根文件系统,其容量为 56G。目前已用空间为 1.2G,可用空间为 54G,已用百分比为 3%。它被挂载在根目录 / 下。

  2. /dev/sdb1 是使用传统分区方案的分区,其文件系统类型为 xfs。该分区容量为 20G,已用空间为 33M,可用空间为 20G,已用百分比为 1%。它被挂载在 /root/RepositoryDisk 目录下。

  3. /dev/sda1 是另一个使用传统分区方案的分区,其文件系统类型为 xfs。该分区容量为 1014M,已用空间为 133M,可用空间为 882M,已用百分比为 14%。它被挂载在 /boot 目录下。

其余的 /dev, devtmpfs, tmpfs 分区都是临时的虚拟文件系统,用于在运行时存储临时数据。

2.关机增加磁盘大小

3.略

4.略 

五、根目录扩容 LVM(添加一块磁盘扩容根目录)
https://huaweicloud.csdn.net/6335657cd3efff3090b55772.html?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Eactivity-1-123200592-blog-129469475.235%5Ev38%5Epc_relevant_sort_base2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Eactivity-1-123200592-blog-129469475.235%5Ev38%5Epc_relevant_sort_base2&utm_relevant_index=2https://huaweicloud.csdn.net/6335657cd3efff3090b55772.html?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~activity-1-123200592-blog-129469475.235%5Ev38%5Epc_relevant_sort_base2&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~activity-1-123200592-blog-129469475.235%5Ev38%5Epc_relevant_sort_base2&utm_relevant_index=2

六、解决问题(不是错误)

[root@localhost ~]# lsblk
NAME            MAJ:MIN RM  SIZE RO TYPE MOUNTPOINT
sda               8:0    0   60G  0 disk 
├─sda1            8:1    0    1G  0 part /boot
├─sda2            8:2    0   39G  0 part 
│ ├─centos-root 253:0    0 55.1G  0 lvm  /
│ └─centos-swap 253:1    0  3.9G  0 lvm  [SWAP]
└─sda3            8:3    0   20G  0 part 
  └─centos-root 253:0    0 55.1G  0 lvm  /
sdb               8:16   0   20G  0 disk 
└─sdb1            8:17   0   20G  0 part /root/RepositoryDisk
sr0              11:0    1  918M  0 rom  

根据提供的 lsblk 输出,我们可以看出以下有关磁盘和分区的信息:

  1. /dev/sda 是一块磁盘,其大小为 60G。

  2. /dev/sda1 sda 磁盘的第一个分区,大小为 1G,被挂载在 /boot 目录下。

  3. /dev/sda2 sda 磁盘的第二个分区,大小为 39G。这是一个 LVM 物理卷(Physical Volume),用于创建 LVM 逻辑卷。

  4. /dev/centos-root 是从 /dev/sda2 创建的 LVM 逻辑卷,大小为 55.1G。该逻辑卷被挂载在根目录 / 下,用作根文件系统。

  5. /dev/centos-swap 是从 /dev/sda2 创建的 LVM 逻辑卷,大小为 3.9G。它被用作交换空间。

  6. /dev/sda3 sda 磁盘的第三个分区,大小为 20G。这是另一个 LVM 物理卷。

  7. /dev/centos-root 是从 /dev/sda3 创建的另一个 LVM 逻辑卷,大小为 55.1G。该逻辑卷也被挂载在根目录 / 下,这似乎是一个错误,应该避免同时挂载两个逻辑卷到同一个挂载点

  8. /dev/sdb 是另一块磁盘,大小为 20G。

  9. /dev/sdb1sdb 磁盘的唯一分区,大小为 20G,被挂载在 /root/RepositoryDisk 目录下。

  10. sr0 是一个 ROM 设备,可能是光驱或者虚拟光驱。

        从上述输出可以看出,/dev/sda1 /dev/sdb1 都是非 LVM 分区,而 /dev/sda2/dev/sda3 是 LVM 物理卷,用于创建 LVM 逻辑卷。请注意 /dev/sda3 上有一个相同的 LVM 逻辑卷 /dev/centos-root,这是一个配置错误,应该避免同时挂载两个逻辑卷到同一个挂载点。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/787373.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《重构的时机和方法》书籍推荐

《重构的时机和方法》是一本由克里斯蒂安克劳森(Christian Clausen)所著(郭涛翻译)的软件工程经典之作。本书全面介绍了重构的概念、原则和方法,为软件开发者提供了一系列宝贵的指导和实践经验。在这篇书评文章中,我将从内容、实用…

Linux环境安装Tomcat

在tomcat官网(下载路径)下载好tomcat压缩包 上传服务器压缩到/usr/tomcat目录下 tar -zxvf xxx.tar.gz 配置tomcat环境变量 export CATALINA_HOME/usr/tomcat/apache-tomcat-8.5.56 export CATALINE_BASE/usr/tomcat/apache-tomcat-8.5.56 export PATH$PATH:$CATALINA_BASE/bi…

阿克曼转向模型介绍

阿克曼转向模型介绍 目录 阿克曼转向模型介绍是什么?基本原理应用与改进 是什么? 阿克曼转向是一种现代汽车的转向方式,在汽车转弯的时候,内外轮转过的角度不一样,内侧轮胎转弯半径小于外侧轮胎。 它描述了汽车转向系…

Spring中如何用注解方式存取JavaBean?有几种注入方式?

博主简介:想进大厂的打工人博主主页:xyk:所属专栏: JavaEE进阶 本篇文章将讲解如何在spring中使用注解的方式来存取Bean对象,spring提供了多种注入对象的方式,常见的注入方式包括 构造函数注入,Setter 方法注入和属性…

TypeError: can‘t convert np.ndarray of type numpy.object_.

在处理数据集的时候出现报错: TypeError: can’t convert np.ndarray of type numpy.object_. The only supported types are: float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, and bool. train_labels torch.tensor(train…

手机怎么压缩pdf?这种压缩方法简单易用

手机怎么压缩pdf?PDF文件是我们生活和工作中常用的一种文档格式,但是有时候PDF文件的大小会很大,不方便发送和存储。那么,如何在手机上压缩PDF文件呢?下面就给大家介绍一种简单好用的压缩方法。 今天要给大家介绍的这款…

甘特图的发展史

目录 背景: 过程: 总结: 背景: 1910年代初为了管理工程项目的进度而创造了甘特图。 1917年,美国工程师亨利甘特(Henry Laurence Gantt)首次提出了甘特图的概念。他是一位工程师和管理学家,设计了一种图表,用于显示进度成产仅度…

毕业生求职招聘网站的设计与实现JAVA(SpringBoot+VUE+Mysql)

由SpringBootVUEMysql实现的网站的设计 功能模块 设计思路:主要分为管理员、毕业生、招聘企业三大身份模块 首先是登录界面 注册界面 其次就是公共页面 公共页面又分为首页、空中宣讲会、招聘岗位、求职信息、论坛信息、试卷列表、招聘资讯、个人中心和后台管理、…

【原创】内网穿透案例

案列一(Frp内网渗透) 大概图列网上随便找的,路线是这个样子 这里选用ctfshow的一道命令执行题 由Frp实现内网访问及扫描 1.传入一句话,上线蚁剑http://b85fdf24-b98e-4810-9e76-a038a8987630.challenge.ctf.show:8080/?cecho…

C语言--位段

C语言—位段 文章目录 C语言---位段一、位段是什么?二、位段的内存分配三,位段的跨平台问题四,位段的应用 一、位段是什么? 位段的声明和结构是类似的,有两个不同: 位段的成员必须是 int、unsigned int 或…

代码随想录day12 | [前、中、后、层]二叉树的遍历迭代法和递归法

文章目录 一、前后中序递归法二、前后序迭代法三、中序遍历迭代法四、层序遍历 递归三部曲: 1️⃣ 第一步确定递归函数的返回值和参数 2️⃣第二步确定递归的终止条件 3️⃣第三步确定单层递归处理的逻辑 一、前后中序递归法 前序遍历二叉树 class Solution { pr…

vue三级路由的写法

{path: "/trafficmanagement",component: Layout,redirect: "/trafficmanagement",alwaysShow: true,meta: {title: "通行模块",icon: "excel",},children: [{path: "carline",name: "carline",alwaysShow: true,…

数据结构day8(2023.7.25)

一、排序算法 排序:把无需序列转换为有序序列的一种算法。 内排:在计算机内存中实现的排序算法【多用适用于数据量较小的情况】 外排:在计算机内存以及外部介质实现的排序算法【先内存,在外部】 排序的分类: 交换排…

Godot 4 源码分析 - 获取脚本

获取属性列表 今天搂草打兔&#xff0c;取得了脚本内容 因为已能取得属性值&#xff0c;那就再进一步&#xff0c;取得属性名列表 if (SameText(drGet.propertyName, "propertyNames", DRGRAPH_FLAG_CASESENSITIVE)) {List<PropertyInfo> *p_list new List…

8年测试整理,自动化测试框架从0到1实施,一篇打通自动化...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 框架本身一般不完…

【LeetCode】62.不同路径

题目 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少条不同的路径&#xff1f; …

信息的表示与处理 (深入理解计算机系统第二章)

刚学习这本书没多久&#xff0c;感觉里面讲的东西挺多的&#xff0c;前后的关联性比较强。学着后面的还需要看看前的才可以更好的理解。 2.1信息存储 无符号(unsigned) 编码是基于传统的二进制表示法的&#xff0c;表示大于或者等于零的数字。 二进制补码(twos-complement)编…

7.string字符串的加法

字符串的加法其实是一个拼接生成新的一个字符串&#xff0c; #include <iostream> #include <Windows.h> #include <string> using namespace std; int main(void) { string s1 "武当派"; string s2 "张三丰"; string s3 "太极…

[Ubuntu 22.04] containerd配置HTTP方式拉取私仓Harbor

文章目录 1. 基础环境配置2. Docker安装3. 部署Harbor&#xff0c;HTTP访问4. 部署ContainerD5. 修改docker配置文件&#xff0c;向harbor中推入镜像6. 配置containerd6.1. 拉取镜像验证6.2. 推送镜像验证 1. 基础环境配置 [Ubuntu 22.04] 安装K8S基础环境准备脚本 2. Docker安…

防静电实时监控系统可以实现的功能

防静电实时监控系统是一种用于监测和识别静电相关问题的技术系统。静电是指由于电荷分布不均匀而引起的电势差&#xff0c;这可能导致电击、电磁干扰和设备故障等问题。 防静电实时监控系统可以通过以下方式实现&#xff1a; 感应传感器&#xff1a;该系统通常使用静电传感器…