63.1 AdaBoosting基本算法:先从初始训练集训练一个弱学习器,在根据弱学习器的表现对训练样本进行权重调整,经过若干轮之后,将得到一组分类器,将数据输入这组分类器后会得到一个综合且准确的的分类结果。“三个臭皮匠,顶个诸葛亮”,多个这样的弱分类器相互补充,最后会变成一个强分类器。
63.2 代码:
package dl;
import java.io.FileReader;
import java.util.Arrays;
import weka.core.Instances;
/**
* Weighted instances.
*/
public class WeightedInstances extends Instances {
/**
* Just the requirement of some classes, any number is ok.
*/
private static final long serialVersionUID = 110;
/**
* Weights.
*/
private double[] weights;
/**
******************
* The first constructor.
*
* @param paraFileReader
* The given reader to read data from file.
******************
*/
public WeightedInstances(FileReader paraFileReader) throws Exception {
super(paraFileReader);
setClassIndex(numAttributes() - 1);
// Initialize weights
weights = new double[numInstances()];
double tempAverage = 1.0 / numInstances();
for (int i = 0; i < weights.length; i++) {
weights[i] = tempAverage;
} // Of for i
System.out.println("Instances weights are: " + Arrays.toString(weights));
} // Of the first constructor
/**
******************
* The second constructor.
*
* @param paraInstances
* The given instance.
******************
*/
public WeightedInstances(Instances paraInstances) {
super(paraInstances);
setClassIndex(numAttributes() - 1);
// Initialize weights
weights = new double[numInstances()];
double tempAverage = 1.0 / numInstances();
for (int i = 0; i < weights.length; i++) {
weights[i] = tempAverage;
} // Of for i
System.out.println("Instances weights are: " + Arrays.toString(weights));
} // Of the second constructor
/**
******************
* Getter.
*
* @param paraIndex
* The given index.
* @return The weight of the given index.
******************
*/
public double getWeight(int paraIndex) {
return weights[paraIndex];
} // Of getWeight
/**
******************
* Adjust the weights.
*
* @param paraCorrectArray
* Indicate which instances have been correctly classified.
* @param paraAlpha
* The weight of the last classifier.
******************
*/
public void adjustWeights(boolean[] paraCorrectArray, double paraAlpha) {
// Step 1. Calculate alpha.
double tempIncrease = Math.exp(paraAlpha);
// Step 2. Adjust.
double tempWeightsSum = 0; // For normalization.
for (int i = 0; i < weights.length; i++) {
if (paraCorrectArray[i]) {
weights[i] /= tempIncrease;
} else {
weights[i] *= tempIncrease;
} // Of if
tempWeightsSum += weights[i];
} // Of for i
// Step 3. Normalize.
for (int i = 0; i < weights.length; i++) {
weights[i] /= tempWeightsSum;
} // Of for i
System.out.println("After adjusting, instances weights are: " + Arrays.toString(weights));
} // Of adjustWeights
/**
******************
* Test the method.
******************
*/
public void adjustWeightsTest() {
boolean[] tempCorrectArray = new boolean[numInstances()];
for (int i = 0; i < tempCorrectArray.length / 2; i++) {
tempCorrectArray[i] = true;
} // Of for i
double tempWeightedError = 0.3;
adjustWeights(tempCorrectArray, tempWeightedError);
System.out.println("After adjusting");
System.out.println(toString());
} // Of adjustWeightsTest
/**
******************
* For display.
******************
*/
public String toString() {
String resultString = "I am a weighted Instances object.\r\n" + "I have " + numInstances() + " instances and "
+ (numAttributes() - 1) + " conditional attributes.\r\n" + "My weights are: " + Arrays.toString(weights)
+ "\r\n" + "My data are: \r\n" + super.toString();
return resultString;
} // Of toString
/**
******************
* For unit test.
*
* @param args
* Not provided.
******************
*/
public static void main(String args[]) {
WeightedInstances tempWeightedInstances = null;
String tempFilename = "C:\\Users\\86183\\IdeaProjects\\deepLearning\\src\\main\\java\\resources\\iris.arff";
try {
FileReader tempFileReader = new FileReader(tempFilename);
tempWeightedInstances = new WeightedInstances(tempFileReader);
tempFileReader.close();
} catch (Exception exception1) {
System.out.println("Cannot read the file: " + tempFilename + "\r\n" + exception1);
System.exit(0);
} // Of try
System.out.println(tempWeightedInstances.toString());
tempWeightedInstances.adjustWeightsTest();
} // Of main
} // Of class WeightedInstances
63.3 结果(部分)