实验八 网络优化与正则化(3)不同优化算法比较

news2024/11/18 23:46:47

目录

  • 7.3 不同优化算法的比较分析
    • 7.3.1 优化算法的实验设定
      • 7.3.1.1 2D可视化实验
      • 7.3.1.2 简单拟合实验
      • 7.3.1.3 与Torch API对比,验证正确性
    • 7.3.2 学习率调整
      • 7.3.2.1 AdaGrad算法
      • 7.3.2.2 RMSprop算法
    • 7.3.3 梯度估计修正
      • 7.3.3.1 动量法
      • 7.3.3.2 Adam算法
    • 7.3.4 不同优化器的3D可视化对比
  • 编程实现下面的动画并添加Adam

7.3 不同优化算法的比较分析

除了批大小对模型收敛速度的影响外,学习率和梯度估计也是影响神经网络优化的重要因素。

神经网络优化中常用的优化方法也主要是如下两方面的改进,包括:

  • 学习率调整:通过自适应地调整学习率使得优化更稳定。AdaGrad、RMSprop、AdaDelta算法等。
  • 梯度估计修正:通过修正每次迭代时估计的梯度方向来加快收敛速度。动量法、Nesterov加速梯度方法等。
    本节还会介绍综合学习率调整和梯度估计修正的优化算法,如Adam算法。

7.3.1 优化算法的实验设定

7.3.1.1 2D可视化实验

为了更好地展示不同优化算法的能力对比,我们选择一个二维空间中的凸函数,然后用不同的优化算法来寻找最优解 ,并可视化梯度下降过程的轨迹

将被优化函数实现为OptimizedFunction算子,其forward方法是Sphere函数的前向计算,backward方法则计算被优化函数对x的偏导。代码实现如下:

import torch
from op import Op
class OptimizedFunction(Op):
    def __init__(self, w):
        super(OptimizedFunction, self).__init__()
        self.w = torch.as_tensor(w,dtype=torch.float32)
        self.params = {'x': torch.as_tensor(0,dtype=torch.float32)}
        self.grads = {'x': torch.as_tensor(0,dtype=torch.float32)}
 
    def forward(self, x):
        self.params['x'] = x
        return torch.matmul(self.w.T, torch.square(self.params['x']))
 
    def backward(self):
        self.grads['x'] = 2 * torch.multiply(self.w.T, self.params['x'])

op:

import torch
import os
from activation import softmax
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" # 这里报错
torch.manual_seed(10) #设置随机种子

class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError

小批量梯度下降优化器 复用3.1.4.3节定义的梯度下降优化器SimpleBatchGD。
训练函数 定义一个简易的训练函数,记录梯度下降过程中每轮的参数x和损失。代码实现如下:

def train_f(model, optimizer, x_init, epoch):
    """
    训练函数
    输入:
        - model:被优化函数
        - optimizer:优化器
        - x_init:x初始值
        - epoch:训练回合数
    """
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(x.numpy())
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.tensor(all_x), losses

可视化函数 定义一个Visualization类,用于绘制x的更新轨迹。代码实现如下:

class Visualization(object):
    def __init__(self):
        """
        初始化可视化类
        """
        # 只画出参数x1和x2在区间[-5, 5]的曲线部分
        x1 = np.arange(-5, 5, 0.1)
        x2 = np.arange(-5, 5, 0.1)
        x1, x2 = np.meshgrid(x1, x2)
        self.init_x = torch.tensor([x1, x2])

    def plot_2d(self, model, x, fig_name):
        """
        可视化参数更新轨迹
        """
        fig, ax = plt.subplots(figsize=(10, 6))
        cp = ax.contourf(self.init_x[0], self.init_x[1], model(self.init_x.transpose(0,1)), colors=['#e4007f', '#f19ec2', '#e86096', '#eb7aaa', '#f6c8dc', '#f5f5f5', '#000000'])
        c = ax.contour(self.init_x[0], self.init_x[1], model(self.init_x.transpose(0,1)), colors='black')
        cbar = fig.colorbar(cp)
        ax.plot(x[:, 0], x[:, 1], '-o', color='#000000')
        ax.plot(0, 'r*', markersize=18, color='#fefefe')
 
        ax.set_xlabel('$x1$')
        ax.set_ylabel('$x2$')
 
        ax.set_xlim((-2, 5))
        ax.set_ylim((-2, 5))
        plt.savefig(fig_name)

定义train_and_plot_f函数,调用train_f和Visualization,训练模型并可视化参数更新轨迹。代码实现如下:

import numpy as np
 
def train_and_plot_f(model, optimizer, epoch, fig_name):
    """
    训练模型并可视化参数更新轨迹
    """
    # 设置x的初始值
    x_init = torch.tensor([3, 4], dtype=torch.float32)
    print('x1 initiate: {}, x2 initiate: {}'.format(x_init[0].numpy(), x_init[1].numpy()))
    x, losses = train_f(model, optimizer, x_init, epoch)
    losses = np.array(losses)
 
    # 展示x1、x2的更新轨迹
    vis = Visualization()
    vis.plot_2d(model, x, fig_name)

模型训练与可视化:

from opitimizer import SimpleBatchGD
# 固定随机种子
torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = SimpleBatchGD(init_lr=0.2, model=model)
train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para.pdf')

optimizer如下:

class Optimizer(object):
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        #初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        #指定优化器需要优化的模型
        self.model = model

    @abstractmethod
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass


#新增梯度下降法优化器
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        #参数更新
        #遍历所有参数,按照公式(3.8)和(3.9)更新参数
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]

运行结果:

x1 initiate: 3.0, x2 initiate: 4.0

tuxiang
输出图中不同颜色代表 f ( x 1 , x 2 ) f(x_1, x_2) f(x1,x2)的值,具体数值可以参考图右侧的对应表,比如深粉色区域代表 f ( x 1 , x 2 ) f(x_1, x_2) f(x1,x2)在0~8之间,不同颜色间黑色的曲线是等值线,代表落在该线上的点对应的 f ( x 1 , x 2 ) f(x_1, x_2) f(x1,x2)的值都相同。

7.3.1.2 简单拟合实验

数据集构建

# 固定随机种子
torch.manual_seed(0)
# 随机生成shape为(1000,2)的训练数据
X = torch.randn([1000, 2])
w = torch.tensor([0.5, 0.8])
w = torch.unsqueeze(w, axis=1)
noise = 0.01 * torch.rand([1000])
noise = torch.unsqueeze(noise, axis=1)
# 计算y
y = torch.matmul(X, w) + noise
# 打印X, y样本
print('X: ', X[0].numpy())
print('y: ', y[0].numpy())

# X,y组成训练样本数据
data = torch.concat((X, y), axis=1)
print('input data shape: ', data.shape)
print('data: ', data[0].numpy())

运行结果:

X:  [-1.1258398 -1.1523602]
y:  [-1.4770346]
input data shape:  torch.Size([1000, 3])
data:  [-1.1258398 -1.1523602 -1.4770346]

定义Linear算子,实现一个线性层的前向和反向计算。代码实现如下:

class Linear(Op):
    def __init__(self, input_size, weight_init=torch.randn, bias_init=torch.zeros):
        super(Linear, self).__init__()
        self.params = {}
        self.params['W'] = weight_init(size=[input_size, 1])
        self.params['b'] = bias_init(size=[1])
        self.inputs = None
        self.grads = {}

    def forward(self, inputs):
        self.inputs = inputs
        self.outputs = torch.matmul(self.inputs, self.params['W']) + self.params['b']
        return self.outputs

    def backward(self, labels):
        K = self.inputs.shape[0]
        self.grads['W'] = 1. /K * torch.matmul(self.inputs.T, (self.outputs - labels))
        self.grads['b'] = 1. /K * torch.sum(self.outputs - labels, axis=0)

这里backward函数中实现的梯度并不是forward函数对应的梯度,而是最终损失关于参数的梯度.由于这里的梯度是手动计算的,所以直接给出了最终的梯度。

训练函数 在准备好样本数据和网络以后,复用优化器SimpleBatchGD类,使用小批量梯度下降来进行简单的拟合实验。

模型训练train函数的代码实现如下:

def train(data, num_epochs, batch_size, model, calculate_loss, optimizer, verbose=False):
    """
    训练神经网络
    输入:
        - data:训练样本
        - num_epochs:训练回合数
        - batch_size:批大小
        - model:实例化的模型
        - calculate_loss:损失函数
        - optimizer:优化器
        - verbose:日志显示,默认为False
    输出:
        - iter_loss:每一次迭代的损失值
        - epoch_loss:每个回合的平均损失值
    """
    # 记录每个回合损失的变化
    epoch_loss = []
    # 记录每次迭代损失的变化
    iter_loss = []
    N = len(data)
    for epoch_id in range(num_epochs):
        # np.random.shuffle(data) #不再随机打乱数据
        # 将训练数据进行拆分,每个mini_batch包含batch_size条的数据
        mini_batches = [data[i:i+batch_size] for i in range(0, N, batch_size)]
        for iter_id, mini_batch in enumerate(mini_batches):
            # data中前两个分量为X
            inputs = mini_batch[:, :-1]
            # data中最后一个分量为y
            labels = mini_batch[:, -1:]
            # 前向计算
            outputs = model(inputs)
            # 计算损失
            loss = calculate_loss(outputs, labels).numpy()[0]
            # 计算梯度
            model.backward(labels)
            # 梯度更新
            optimizer.step()
            iter_loss.append(loss)
        # verbose = True 则打印当前回合的损失
        if verbose:
            print('Epoch {:3d}, loss = {:.4f}'.format(epoch_id, np.mean(iter_loss)))
        epoch_loss.append(np.mean(iter_loss))
    return iter_loss, epoch_loss

优化过程可视化 定义plot_loss函数,用于绘制损失函数变化趋势。代码实现如下:

def plot_loss(iter_loss, epoch_loss, fig_name):
    """
    可视化损失函数的变化趋势
    """
    plt.figure(figsize=(10, 4))
    ax1 = plt.subplot(121)
    ax1.plot(iter_loss, color='#e4007f')
    plt.title('iteration loss')
    ax2 = plt.subplot(122)
    ax2.plot(epoch_loss, color='#f19ec2')
    plt.title('epoch loss')
    plt.savefig(fig_name)
    plt.show()

对于使用不同优化器的模型训练,保存每一个回合损失的更新情况,并绘制出损失函数的变化趋势,以此验证模型是否收敛。定义train_and_plot函数,调用train和plot_loss函数,训练并展示每个回合和每次迭代(Iteration)的损失变化情况。在模型训练时,使用torch.nn.MSELoss()计算均方误差。代码实现如下:

import torch.nn as nn
def train_and_plot(optimizer, fig_name):
    """
    训练网络并画出损失函数的变化趋势
    输入:
        - optimizer:优化器
    """
    # 定义均方差损失
    mse = nn.MSELoss()
    iter_loss, epoch_loss = train(data, num_epochs=30, batch_size=64, model=model, calculate_loss=mse, optimizer=optimizer)
    plot_loss(iter_loss, epoch_loss, fig_name)

训练网络并可视化损失函数的变化趋势。代码实现如下:

# 定义网络结构
model = Linear(2)
# 定义优化器
opt = SimpleBatchGD(init_lr=0.01, model=model)
train_and_plot(opt, 'opti-loss.pdf')

在这里插入图片描述
从输出结果看,loss在不断减小,模型逐渐收敛。

7.3.1.3 与Torch API对比,验证正确性

分别实例化自定义SimpleBatchGD优化器和调用torch.optim.SGD API, 验证自定义优化器的正确性

torch.manual_seed(0)
 
x = data[0, :-1].unsqueeze(0)
y = data[0, -1].unsqueeze(0)
 
model1 = Linear(2)
print('model1 parameter W: ', model1.params['W'].numpy())
opt1 = SimpleBatchGD(init_lr=0.01, model=model1)
output1 = model1(x)
 
model2 = nn.Linear(2, 1)
model2.weight=torch.nn.Parameter(torch.tensor(model1.params['W'].T))
print('model2 parameter W: ', model2.state_dict()['weight'].numpy())
output2 = model2(x)
 
model1.backward(y)
opt1.step()
print('model1 parameter W after train step: ', model1.params['W'].numpy())
 
opt2 = torch.optim.SGD(lr=0.01, params=model2.parameters())
loss = torch.nn.functional.mse_loss(output2, y) / 2
loss.backward()
opt2.step()
opt2.zero_grad()
print('model2 parameter W after train step: ', model2.state_dict()['weight'].numpy())

7.3.2 学习率调整

学习率是神经网络优化时的重要超参数。在梯度下降法中,学习率α的取值非常关键,如果取值过大就不会收敛,如果过小则收敛速度太慢。
常用的学习率调整方法包括如下几种方法:

  • 学习率衰减:如分段常数衰减(Piecewise Constant Decay)、余弦衰减(Cosine Decay)等;
  • 学习率预热:如逐渐预热(Gradual Warmup) 等;
  • 周期性学习率调整:如循环学习率等;
  • 自适应调整学习率的方法:如AdaGrad、RMSprop、AdaDelta等。自适应学习率方法可以针对每个参数设置不同的学习率。

7.3.2.1 AdaGrad算法

构建优化器 定义Adagrad类,继承Optimizer类。定义step函数调用adagrad进行参数更新。代码实现如下:

class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率
            - model:模型,model.params存储模型参数值
            - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon
 
    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G
 
    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)

2D可视化实验 使用被优化函数展示Adagrad算法的参数更新轨迹。代码实现如下:

torch.manual_seed(0)
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adagrad(init_lr=0.5, model=model, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para2.pdf')

简单拟合实验 训练单层线性网络,验证损失是否收敛。代码实现如下:

# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adagrad(init_lr=0.1, model=model, epsilon=1e-7)
train_and_plot(opt, 'opti-loss2.pdf')

运行结果:
在这里插入图片描述

7.3.2.2 RMSprop算法

构建优化器 定义RMSprop类,继承Optimizer类。定义step函数调用rmsprop更新参数。代码实现如下:

class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon

    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G

    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key], 
                                                               self.model.grads[key],
                                                               self.G[key], 
                                                               self.init_lr)

2D可视化实验 使用被优化函数展示RMSprop算法的参数更新轨迹。代码实现如下:

w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para3.pdf')

在这里插入图片描述

简单拟合实验 训练单层线性网络,进行简单的拟合实验。代码实现如下:

# 定义网络结构
model = Linear(2)
# 定义优化器
opt = RMSprop(init_lr=0.1, model=model, beta=0.9, epsilon=1e-7)
train_and_plot(opt, 'opti-loss3.pdf')

在这里插入图片描述

7.3.3 梯度估计修正

除了调整学习率之外,还可以进行梯度估计修正。在小批量梯度下降法中,由于每次迭代的样本具有一定的随机性,因此每次迭代的梯度估计和整个训练集上的最优梯度并不一致。如果每次选取样本数量比较小,损失会呈振荡的方式下降。
一种有效地缓解梯度估计随机性的方式是通过使用最近一段时间内的平均梯度来代替当前时刻的随机梯度来作为参数更新的方向,从而提高优化速度。

7.3.3.1 动量法

构建优化器 定义Momentum类,继承Optimizer类。定义step函数调用momentum进行参数更新。代码实现如下:

class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho

    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x

    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key], 
                                                                      self.model.grads[key], 
                                                                      self.delta_x[key], 
                                                                      self.init_lr) 


2D可视化实验 使用被优化函数展示Momentum算法的参数更新轨迹。

# 固定随机种子
w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot_f(model, opt, epoch=50, fig_name='opti-vis-para4.pdf')

在这里插入图片描述

简单拟合实验 训练单层线性网络,进行简单的拟合实验。代码实现如下:


# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Momentum(init_lr=0.01, model=model, rho=0.9)
train_and_plot(opt, 'opti-loss4.pdf')

在这里插入图片描述

7.3.3.2 Adam算法

Adam算法(自适应矩估计算法)可以看作动量法和RMSprop算法的结合,不但使用动量作为参数更新方向,而且可以自适应调整学习率。

class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1

    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t

    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key], 
                                                                                 self.model.grads[key],
                                                                                 self.G[key], 
                                                                                 self.M[key],
                                                                                 self.t, 
                                                                                 self.init_lr)                                                                               

2D可视化实验 使用被优化函数展示Adam算法的参数更新轨迹。代码实现如下:

w = torch.tensor([0.2, 2])
model = OptimizedFunction(w)
opt = Adam(init_lr=0.2, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot_f(model, opt, epoch=20, fig_name='opti-vis-para5.pdf')

在这里插入图片描述

简单拟合实验 训练单层线性网络,进行简单的拟合实验。代码实现如下:

# 定义网络结构
model = Linear(2)
# 定义优化器
opt = Adam(init_lr=0.1, model=model, beta1=0.9, beta2=0.99, epsilon=1e-7)
train_and_plot(opt, 'opti-loss5.pdf')

在这里插入图片描述

7.3.4 不同优化器的3D可视化对比

定义OptimizedFunction3D算子,表示被优化函数 f ( x ) = x [ 0 ] 2 + x [ 1 ] 2 + x [ 1 ] 3 + x [ 0 ] ∗ x [ 1 ] f(\bm x) = \bm x[0]^2 + \bm x[1]^2 + \bm x[1]^3 + \bm x[0]*\bm x[1] f(x)=x[0]2+x[1]2+x[1]3+x[0]x[1],其中 x [ 0 ] \bm x[0] x[0], x [ 1 ] \bm x[1] x[1]代表两个参数。该函数在(0,0)处存在鞍点,即一个既不是极大值点也不是极小值点的临界点。希望训练过程中,优化算法可以使参数离开鞍点,向模型最优解收敛。代码实现如下:

class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}

    def forward(self, x):
        self.params['x'] = x
        return x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0]*x[1]

    def backward(self):
        x = self.params['x']
        gradient1 = torch.tensor(2 * x[0] + x[1])
        gradient2 = torch.tensor(2 * x[1] + 3 * x[1] ** 2 + x[0])
        self.grads['x'] = torch.concat([gradient1, gradient2])

对于相同的被优化函数,分别使用不同的优化器进行参数更新,并保存不同优化器下参数更新的值,用于可视化。代码实现如下:

# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.01, model=model1)
 
model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.5, model=model2, epsilon=1e-7)
 
model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.1, model=model3, beta=0.9, epsilon=1e-7)
 
model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.01, model=model4, rho=0.9)
 
model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.1, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)
 
models = [model1, model2, model3, model4, model5]
opts = [opt_gd, opt_adagrad, opt_rmsprop, opt_momentum, opt_adam]
 
x_all_opts = []
z_all_opts = []
 
# 使用不同优化器训练
 
for model, opt in zip(models, opts):
    x_init = torch.FloatTensor([2, 3])
    x_one_opt, z_one_opt = train_f(model, opt, x_init, 150)  # epoch
    # 保存参数值
    x_all_opts.append(x_one_opt.numpy())
    z_all_opts.append(np.squeeze(z_one_opt))

绘制出被优化函数的三维图像。代码实现如下:

from mpl_toolkits.mplot3d import Axes3D

# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-3, 3, 0.1)
x2 = np.arange(-3, 3, 0.1)
x1, x2 = np.meshgrid(x1, x2)
init_x = paddle.to_tensor([x1, x2])
model = OptimizedFunction3D()

# 绘制f_3d函数的三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_surface(init_x[0], init_x[1], model(init_x), color='#f19ec2')
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')
plt.savefig('opti-f-3d.pdf')
from IPython.display import HTML

labels = ['SGD', 'AdaGrad', 'RMSprop', 'Momentum', 'Adam']
colors = ['#9c9d9f', '#f7d2e2', '#f19ec2', '#e86096', '#000000']

anim = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper left')
HTML(anim.to_html5_video())

在这里插入图片描述

编程实现下面的动画并添加Adam

import torch
import numpy as np
import copy
from matplotlib import pyplot as plt
from matplotlib import animation
from itertools import zip_longest
from matplotlib import cm


class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    # 输入:张量inputs
    # 输出:张量outputs
    def forward(self, inputs):
        # return outputs
        raise NotImplementedError

    # 输入:最终输出对outputs的梯度outputs_grads
    # 输出:最终输出对inputs的梯度inputs_grads
    def backward(self, outputs_grads):
        # return inputs_grads
        raise NotImplementedError


class Optimizer(object):  # 优化器基类
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        # 初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        # 指定优化器需要优化的模型
        self.model = model

    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass


class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        # 参数更新
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]


class Adagrad(Optimizer):
    def __init__(self, init_lr, model, epsilon):
        """
        Adagrad 优化器初始化
        输入:
            - init_lr: 初始学习率 - model:模型,model.params存储模型参数值  - epsilon:保持数值稳定性而设置的非常小的常数
        """
        super(Adagrad, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.epsilon = epsilon

    def adagrad(self, x, gradient_x, G, init_lr):
        """
        adagrad算法更新参数,G为参数梯度平方的累计值。
        """
        G += gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G

    def step(self):
        """
        参数更新
        """
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.adagrad(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)


class RMSprop(Optimizer):
    def __init__(self, init_lr, model, beta, epsilon):
        """
        RMSprop优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta:衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(RMSprop, self).__init__(init_lr=init_lr, model=model)
        self.G = {}
        for key in self.model.params.keys():
            self.G[key] = 0
        self.beta = beta
        self.epsilon = epsilon

    def rmsprop(self, x, gradient_x, G, init_lr):
        """
        rmsprop算法更新参数,G为迭代梯度平方的加权移动平均
        """
        G = self.beta * G + (1 - self.beta) * gradient_x ** 2
        x -= init_lr / torch.sqrt(G + self.epsilon) * gradient_x
        return x, G

    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key] = self.rmsprop(self.model.params[key],
                                                               self.model.grads[key],
                                                               self.G[key],
                                                               self.init_lr)


class Momentum(Optimizer):
    def __init__(self, init_lr, model, rho):
        """
        Momentum优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - rho:动量因子
        """
        super(Momentum, self).__init__(init_lr=init_lr, model=model)
        self.delta_x = {}
        for key in self.model.params.keys():
            self.delta_x[key] = 0
        self.rho = rho

    def momentum(self, x, gradient_x, delta_x, init_lr):
        """
        momentum算法更新参数,delta_x为梯度的加权移动平均
        """
        delta_x = self.rho * delta_x - init_lr * gradient_x
        x += delta_x
        return x, delta_x

    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.delta_x[key] = self.momentum(self.model.params[key],
                                                                      self.model.grads[key],
                                                                      self.delta_x[key],
                                                                      self.init_lr)


class Adam(Optimizer):
    def __init__(self, init_lr, model, beta1, beta2, epsilon):
        """
        Adam优化器初始化
        输入:
            - init_lr:初始学习率
            - model:模型,model.params存储模型参数值
            - beta1, beta2:移动平均的衰减率
            - epsilon:保持数值稳定性而设置的常数
        """
        super(Adam, self).__init__(init_lr=init_lr, model=model)
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.M, self.G = {}, {}
        for key in self.model.params.keys():
            self.M[key] = 0
            self.G[key] = 0
        self.t = 1

    def adam(self, x, gradient_x, G, M, t, init_lr):
        """
        adam算法更新参数
        输入:
            - x:参数
            - G:梯度平方的加权移动平均
            - M:梯度的加权移动平均
            - t:迭代次数
            - init_lr:初始学习率
        """
        M = self.beta1 * M + (1 - self.beta1) * gradient_x
        G = self.beta2 * G + (1 - self.beta2) * gradient_x ** 2
        M_hat = M / (1 - self.beta1 ** t)
        G_hat = G / (1 - self.beta2 ** t)
        t += 1
        x -= init_lr / torch.sqrt(G_hat + self.epsilon) * M_hat
        return x, G, M, t

    def step(self):
        """参数更新"""
        for key in self.model.params.keys():
            self.model.params[key], self.G[key], self.M[key], self.t = self.adam(self.model.params[key],
                                                                                 self.model.grads[key],
                                                                                 self.G[key],
                                                                                 self.M[key],
                                                                                 self.t,
                                                                                 self.init_lr)


class OptimizedFunction3D(Op):
    def __init__(self):
        super(OptimizedFunction3D, self).__init__()
        self.params = {'x': 0}
        self.grads = {'x': 0}

    def forward(self, x):
        self.params['x'] = x
        return - x[0] * x[0] / 2 + x[1] * x[1] / 1  # x[0] ** 2 + x[1] ** 2 + x[1] ** 3 + x[0] * x[1]

    def backward(self):
        x = self.params['x']
        gradient1 = - 2 * x[0] / 2
        gradient2 = 2 * x[1] / 1
        grad1 = torch.Tensor([gradient1])
        grad2 = torch.Tensor([gradient2])
        self.grads['x'] = torch.cat([grad1, grad2])


class Visualization3D(animation.FuncAnimation):
    """    绘制动态图像,可视化参数更新轨迹    """

    def __init__(self, *xy_values, z_values, labels=[], colors=[], fig, ax, interval=100, blit=True, **kwargs):
        """
        初始化3d可视化类
        输入:
            xy_values:三维中x,y维度的值
            z_values:三维中z维度的值
            labels:每个参数更新轨迹的标签
            colors:每个轨迹的颜色
            interval:帧之间的延迟(以毫秒为单位)
            blit:是否优化绘图
        """
        self.fig = fig
        self.ax = ax
        self.xy_values = xy_values
        self.z_values = z_values

        frames = max(xy_value.shape[0] for xy_value in xy_values)
        # , marker = 'o'
        self.lines = [ax.plot([], [], [], label=label, color=color, lw=2)[0]
                      for _, label, color in zip_longest(xy_values, labels, colors)]
        print(self.lines)
        super(Visualization3D, self).__init__(fig, self.animate, init_func=self.init_animation, frames=frames,
                                              interval=interval, blit=blit, **kwargs)

    def init_animation(self):
        # 数值初始化
        for line in self.lines:
            line.set_data([], [])
            # line.set_3d_properties(np.asarray([]))  # 源程序中有这一行,加上会报错。 Edit by David 2022.12.4
        return self.lines

    def animate(self, i):
        # 将x,y,z三个数据传入,绘制三维图像
        for line, xy_value, z_value in zip(self.lines, self.xy_values, self.z_values):
            line.set_data(xy_value[:i, 0], xy_value[:i, 1])
            line.set_3d_properties(z_value[:i])
        return self.lines


def train_f(model, optimizer, x_init, epoch):
    x = x_init
    all_x = []
    losses = []
    for i in range(epoch):
        all_x.append(copy.deepcopy(x.numpy()))  # 浅拷贝 改为 深拷贝, 否则List的原值会被改变。 Edit by David 2022.12.4.
        loss = model(x)
        losses.append(loss)
        model.backward()
        optimizer.step()
        x = model.params['x']
    return torch.Tensor(np.array(all_x)), losses


# 构建5个模型,分别配备不同的优化器
model1 = OptimizedFunction3D()
opt_gd = SimpleBatchGD(init_lr=0.05, model=model1)

model2 = OptimizedFunction3D()
opt_adagrad = Adagrad(init_lr=0.05, model=model2, epsilon=1e-7)

model3 = OptimizedFunction3D()
opt_rmsprop = RMSprop(init_lr=0.05, model=model3, beta=0.9, epsilon=1e-7)

model4 = OptimizedFunction3D()
opt_momentum = Momentum(init_lr=0.05, model=model4, rho=0.9)

model5 = OptimizedFunction3D()
opt_adam = Adam(init_lr=0.05, model=model5, beta1=0.9, beta2=0.99, epsilon=1e-7)

models = [model5, model2, model3, model4, model1]
opts = [opt_adam, opt_adagrad, opt_rmsprop, opt_momentum, opt_gd]

x_all_opts = []
z_all_opts = []

# 使用不同优化器训练

for model, opt in zip(models, opts):
    x_init = torch.FloatTensor([0.00001, 0.5])
    x_one_opt, z_one_opt = train_f(model, opt, x_init, 100)  # epoch
    # 保存参数值
    x_all_opts.append(x_one_opt.numpy())
    z_all_opts.append(np.squeeze(z_one_opt))

# 使用numpy.meshgrid生成x1,x2矩阵,矩阵的每一行为[-3, 3],以0.1为间隔的数值
x1 = np.arange(-1, 2, 0.01)
x2 = np.arange(-1, 1, 0.05)
x1, x2 = np.meshgrid(x1, x2)
init_x = torch.Tensor(np.array([x1, x2]))

model = OptimizedFunction3D()

# 绘制 f_3d函数 的 三维图像
fig = plt.figure()
ax = plt.axes(projection='3d')
X = init_x[0].numpy()
Y = init_x[1].numpy()
Z = model(init_x).numpy()  # 改为 model(init_x).numpy() David 2022.12.4
surf = ax.plot_surface(X, Y, Z, edgecolor='grey', cmap=cm.coolwarm)
# fig.colorbar(surf, shrink=0.5, aspect=1)
ax.set_zlim(-3, 2)
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_zlabel('f(x1,x2)')

labels = ['Adam', 'AdaGrad', 'RMSprop', 'Momentum', 'SGD']
colors = ['#8B0000', '#0000FF', '#000000', '#008B00', '#FF0000']

animator = Visualization3D(*x_all_opts, z_values=z_all_opts, labels=labels, colors=colors, fig=fig, ax=ax)
ax.legend(loc='upper right')

plt.show()
# animator.save('animation.gif') # 效果不好,估计被挡住了…… 有待进一步提高 Edit by David 2022.12.4

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/77589.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java基于Springboot的简历系统-计算机毕业设计

项目介绍 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,简历系统当然也不能排除在外。简历系统是以实际运用为开发背景,运用软件工程原理和开发方法,…

SAP ABAP CDS view Association 引入的缘由

ABAP CDS view 支持三种 join 方式: Inner JoinLeft Outer joinRight outer join 我们使用 ABAP Development Tool 的 CDS view 向导创建一个 CDS view: 向导里包含的 $ 和大括号就是占位符,需要开发人员自己指定: 我们把占位符…

奇舞周刊475期:2022年 CSS 生态圈技术趋势!

记得点击文章末尾的“ 阅读原文 ”查看哟~下面先一起看下本期周刊 摘要 吧~奇舞推荐■ ■ ■2022年 CSS 生态圈技术趋势!一年一度的 State of CSS 调查结果正式公布!通过本文看看2022年 CSS 生态圈的技术趋势!React Streaming SSR 原理解析Re…

BI技巧丨RANKX浮点运算

RANKX这个函数,白茶之前已经写过很多期了,本期是对RANKX函数一个细节问题的补充。 我们常见的数据类型有很多,用来聚合的主要有三种数据类型:文本、整数、小数。 在大部分场合,小数是实际FACT数据中最为常见的数据类…

[1180]clickhouse查看数据库和表的容量大小

文章目录1.查看数据库容量、行数、压缩率2.查看数据表容量、行数、压缩率3.查看数据表分区信息4.查看数据表字段的信息5. 查看表的各个指标6.跟踪分区7.检查数据大小在mysql中information_schema这个数据库中保存了mysql服务器所有数据库的信息, 而在clickhouse&…

[附源码]Python计算机毕业设计SSM基于健身房管理系统(程序+LW)

项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术: SSM mybatis Maven Vue 等等组成,B/S模式 M…

Java 变量作用域、构造方法官方教程

一、变量作用域 Java 中的变量有3种: 📖 ① 全局变量:被定义在类中(成员变量) 📖 ② 局部变量:被定义在成员方法、代码块、静态代码块中定义的变量 📖 ③ 参数:方法声明中的变量 T…

1.Spring简介

1.概念 Spring是一个免费开源框架,为了简化企业级项目开发,提供全面的开发部署解决方案。 2.体系结构 Data Access/Integeration是Spring对数据持久层的支持,SpringDataJpa就是其中的一种。Web是Spring对表现层处理的支持,Spir…

Springboot多环境开发

文章目录一. 前言二. 单文件版多环境配置三. 多文件版多环境配置四. 多环境开发配置技巧五. 多环境配置分组管理一. 前言 在日常开发中我们使用的环境可能会不一样,比如开发环境,测试环境,生产环境,那么这些环境对应的配置也会不…

【计算机视觉】数据获取、数据标注、数据增强的概念简介

觉得有帮助麻烦点赞关注收藏~~~ 基于深度学习的视频分析算法是依赖于数据训练的,数据是深度学习的主要原料,对于算法性能的提升是非常重要的。本章将重点介绍数据的获取、标注、增强及处理方法。 一、数据获取 训练数据的来源主要包括网上公开数据库和…

Redis实现短信登录

文章目录一、基于Session实现登录二、基于Redis实现共享Session实现登录一、基于Session实现登录 ---------------------------------------------------Controller PostMapping("code") public Result sendCode(RequestParam("phone") String phone, Http…

JavaScript进阶教程——面向对象、原型对象、this关键字、bind appl call方法

文章目录面向对象ES2015的面向对象语法:ES5的面向对象语法:原型对象原型链Object对象的原型this关键字**指向调用方法的对象:****构造函数:**触发事件指向全局对象:箭头函数总结bind appl call方法call的用法参数apply…

【计算机图形学入门】笔记4:变换(模型、视图、投影)

目录04变换(模型、视图、投影)1.使用齐次坐标表示的三维变换2.view/Camera 视图变换3.Projection 投影变换1.Orthographic projection 正交投影2.Perspective projection 透视投影 ——更适合人眼成像(近大远小,鸽子为什么这么大&…

AlphaControls 读取存贮数据VCL OnChange事件的处理

AlphaControls 读取存贮数据VCL OnChange事件的处理 AlphaControls控件,窗口时显示,对于VCL控件的处理,需要通过调用皮肤模板重新画出来。因此,在窗口的显示过程中,对VCL控件的数据装载(变更&#x…

从获评毕马威中国领先地产科技50强 看贝壳的长期主义

11月9日,在上海进博会现场,毕马威发布了2022年度(第二届)“毕马威中国领先地产科技企业50”报告,并正式发布了年度毕马威中国领先地产科技企业50榜及地产科技新锐企业榜。作为国内居住产业数字服务平台的贝壳上榜。 众…

前辈给的 Spring Cloud 与 Docker 微服务实战,挽救了要被辞退的我

前言 还记得那天天气阴冷,整个人心都是拔凉拔凉的;原因是因为领导找我聊了一下,委婉地说觉得我的技术不太行,能力不突出;要么自己做出改变,要么选择离开。 说实话,我是有点难过的,…

Lambda完整学习指南

什么是Lambda表达式 Lambda表达式是Java SE 8中一个重要的新特性。lambda表达式允许你通过表达式来代替功能接口。lambda表达式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块)。Lambda表达式还增强了集合库。 Java La…

大学生HTML作业篮球网页 HTML作业篮球网页期末作业 HTML+CSS篮球网页 HTML学生作业体育篮球网页

🎉精彩专栏推荐 💭文末获取联系 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 💂 作者主页: 【主页——🚀获取更多优质源码】 🎓 web前端期末大作业: 【📚毕设项目精品实战案例 (10…

ARS系列毫米波雷达技术一览

近年来,自动驾驶成为了当下最热门的话题。随着自动驾驶技术的发展,作为其关键传感器之一的毫米波雷达,也得到了广泛关注。但就目前来看,海外巨头公司主导着全球毫米波雷达产业的发展,其中,大陆ARS540更以九…

吊打面试官,聊聊:Java中String对象的大小?(史上最全)

下面是一个常见的Java 面试题: 聊聊:Java中String对象的大小? 首先,看看空String占用的空间 当前内存大小是在默认开启压缩指针的条件下 对象头 12char[]数组引用 4int 类型 hash数据大小 4loss due to the next object alignm…