大语言模型举例和相关论文推荐

news2024/11/15 22:53:56

  大语言模型如火如荼。甚至已经爆发了“百模大战”

2023年,“百模大战”,一触即发。

因为工作需要,我除了参加行业、企业、研究机构的发布会和闭门会,还需要基于自身的业务,不断了解最新的AI大模型和AIGC应用

2024年预估会达到“千模大战”的程度。

国内值得关注的大语言模型:

图片

国际值得关注的大语言模型:

图片

 

 

其中:

  1. GPT-3(Generative Pre-trained Transformer 3):由OpenAI开发的一款巨大的语言模型,具有1750亿个参数,是迄今为止最大的语言模型。它在多种自然语言处理任务上表现出色,可以生成高质量的文本。

  2. GPT-2(Generative Pre-trained Transformer 2):也是由OpenAI开发的一款大型语言模型,参数量为15亿,比GPT-3小得多。尽管规模较小,但GPT-2仍然在多个任务上展现出强大的生成能力。

  3. T5(Text-To-Text Transfer Transformer):由Google开发的语言模型,参数量为11亿。与其他模型不同,T5是一种通用的文本转换模型,可以用于各种任务,包括文本摘要、翻译、问答等。

  4. XLNet:由华为开发的语言模型,采用了自回归和自编码两种训练方式,并引入了全局上下文信息,以改善对上下文的建模能力。XLNet在多种自然语言处理任务上表现出色。

这些大型语言模型在自然语言处理领域具有重要的影响力,它们在生成文本、问答系统、机器翻译、摘要生成等多个任务上展现出强大的能力,并推动了自然语言处理的研究和应用发展。

开发实现大语言模型的技术:

  1. Transformer模型:Transformer是一种基于自注意力机制的神经网络架构,被广泛用于大语言模型的训练。Transformer模型具有良好的建模能力和并行计算性能,能够有效地捕捉长距离依赖关系。

  2. 无监督预训练:大语言模型通常使用大规模的无标签文本数据进行无监督预训练。这一阶段的目标是通过学习语言模型来使模型具有对语言的基本理解和表示能力。常见的预训练任务包括自回归(Autoregressive)和自编码(Autoencoder)等。

  3. 多层次训练:训练大语言模型时,通常会使用多个训练阶段或多个模型规模进行逐步训练。从较小的规模开始,逐渐增加模型的容量和复杂性,以提高模型的表现能力。

  4. 大规模分布式训练:由于大语言模型参数众多,训练这些模型通常需要使用分布式计算进行加速。采用分布式训练框架和技术,例如数据并行和模型并行,可以利用多个计算设备和计算节点进行模型训练,加快训练速度。

  5. 随机性控制:为了增加模型的多样性和鲁棒性,大语言模型的训练通常会引入一定的随机性。例如,在预训练和微调过程中,可以使用随机掩码或删除一些输入信息,以使模型更好地处理未知的输入情况。

  6. 数据处理和增强:在大语言模型的训练过程中,数据处理和增强技术也起着重要的作用。例如,数据清洗、标记和分词、数据扩充等技术可以帮助提升模型的鲁棒性和泛化能力。

  7. 优化算法:针对大规模语言模型的训练,高效的优化算法是必不可少的。常用的优化算法包括随机梯度下降(SGD)、Adam等,这些算法能够在大规模参数空间中进行高效的梯度更新和优化。

这些技术共同构成了训练大语言模型的关键环节,通过不断改进和优化这些技术,研究人员能够训练出更强大、更具表现力的大型语言模型。

以下是一些与训练大型语言模型相关的重要论文:

  1. "Attention is All You Need" by Vaswani et al. (2017): 这篇论文提出了Transformer模型,引入了自注意力机制,成为现代语言模型训练的基础。

  2. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" by Devlin et al. (2018): 这篇论文介绍了BERT(Bidirectional Encoder Representations from Transformers)模型,通过双向预训练的方式在大规模无标签数据上进行训练,成为许多NLP任务的基准模型。

  3. "GPT: Improving Language Understanding by Generative Pre-training" by Radford et al. (2018): 这篇论文提出了GPT(Generative Pre-trained Transformer)模型,通过自回归预训练方法,在大规模文本数据上训练生成式语言模型。

  4. "GPT-2: Language Models are Unsupervised Multitask Learners" by Radford et al. (2019): 这篇论文是对GPT的改进,提出了GPT-2模型,具有更大的模型规模和更好的生成能力。

  5. "XLNet: Generalized Autoregressive Pretraining for Language Understanding" by Yang et al. (2019): 这篇论文介绍了XLNet模型,采用自回归和自编码两种训练方式,引入了全局上下文信息,提高了模型的建模能力。

  6. "T5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer" by Raffel et al. (2019): 这篇论文提出了T5模型,通过文本转换任务的通用框架,将各种NLP任务都归结为文本转换问题。

  7. "ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators" by Clark et al. (2020): 这篇论文介绍了ELECTRA(Efficiently Learning an Encoder that Classifies Token Replacements Accurately)模型,通过生成式对抗网络的方式进行预训练,提高了训练效率和生成质量。

这些论文代表了大型语言模型训练领域的重要里程碑,它们对于模型架构、预训练任务、优化算法等方面的创新和改进,对于推动大型语言模型的发展具有重要作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/757677.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java线程状态

Java线程状态 有哪几种 在Java中,线程可以存在多种状态。以下是常见的几种线程状态: 新建状态(New):当创建一个线程对象时,线程即处于新建状态。此时尚未调用线程的start()方法。 可运行状态(…

26-分布式锁

1、JMeter下载安装 Index of /dist/jmeter/binaries 1.1、JMeter配置 1.1.1、JMeter页面显示中文 将jmeter.properties文件中的language=zh_CN。 1.1.2、JMeter发送请求返回的Response显示中文 将jmeter.properties文件中的sampleresult.default.encoding=UTF-8 1.2、启…

Vue绑定class样式

效果&#xff1a;指定变换成某种颜色 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><style>.basic{width: 400px;height: 100px;border: 1px solid black;}.happy{backg…

Redis数据类型和使用场景

Redis五大基本数据结构 String,Hash,List,Set,ZSet String String是Redis最基本的数据结构&#xff0c;用来设置KV键值对&#xff0c;redis有16个数据库&#xff0c;可直接在当前数据库中set添加String的KV对。 使用场景 KV对&#xff0c;记录学生ID和姓名。<ID, NAME&g…

【高效】极致简化vuex.js(仅需6行代码),让快速敏捷开发不是梦!

vuex.js import Vue from vue; import Vuex from vuex; Vue.use(Vuex); // 设置vuex所有变量 let state {_qiangGe: false,//需要添加全局变量就在此处回车添加一个即可&#xff0c;非常方便&#xff01;&#xff01;&#xff01; }, getters {}, mutations {}, actions …

Spring【Spring体系结构、IOC_控制反转思想、Spring实现IOC 】(一)-全面详解(学习总结---从入门到深化)

目录 Spring简介 Spring体系结构 IOC_控制反转思想 IOC_自定义对象容器 IOC_Spring实现IOC IOC_Spring容器类型 IOC_对象的创建方式 Spring简介 Spring是一个开源框架&#xff0c;为简化企业级开发而生。它以IOC&#xff08;控制 反转&#xff09;和AOP&#xff0…

视频转动图怎么做?一招轻松学会

当需要将下载的视频转gif动图时&#xff0c;该怎样来操作才能更加的简单快捷&#xff0c;相信很多小伙伴都会遇到这个问题。那么想要将视频做成二维码&#xff0c;一般情况下可以使用gif制作工具来处理&#xff0c;对于不经常制作的小伙伴而言&#xff0c;下载视频转gif&#x…

make/Makefile【Linux系统编程】

一个工程中的源文件不计数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;makefile定义了一系列的规则来指定&#xff0c;哪些文件需要先编译&#xff0c;哪些文件需要后编译&#xff0c;哪些文件需要重新编译&#xff0c;甚至于进行更复杂的功能操作 makef…

哈希的应用(2)——布隆过滤器

布隆过滤器的提出 目录 布隆过滤器的提出 布隆过滤器概念 布隆过滤器的插入 ​编辑 布隆过滤器的查找&#xff08;保证可能存在&#xff0c;一定不存在&#xff09; 布隆过滤器的删除 布隆过滤器的优点 布隆过滤器的缺点 布隆过滤器的使用场景 布隆过滤器&哈希切…

基础算法之搜素(bfs和dfs模板和例题)

目录 一、深度优先搜索与回溯1、四阶数独2、排列类问题3、红与黑&#xff08;dfs或bfs和Flood fill&#xff09; 之前学习了暴力枚举策略&#xff0c;将所有可能的情况都枚举一遍以获得最优解&#xff0c;但是枚举全部元素的效率如同愚公移山&#xff0c;无法应付数据范围稍大的…

【LLM】Langchain使用[三](基于文档的问答)

文章目录 一、基于文档的问答1. 创建向量存储2. 不同类型的chain链 二、本地知识库问答Reference 一、基于文档的问答 1. 创建向量存储 使用Dock Array内存搜索向量存储&#xff0c;作为一个内存向量存储&#xff0c;不需要连接外部数据库创建向量存储&#xff1a;导入一个索…

复习第七课 C语言-指针数组,函数,string

目录 【1】指针和数组 【2】数组指针 【3】指针数组 【4】函数 【5】函数传参 【6】动态开辟堆区空间 【7】string函数族 【8】递归函数 练习&#xff1a; 【1】指针和数组 直接访问&#xff1a;通过数组名访问 间接访问&#xff1a;通过指针访问 》1. 一维数组 in…

动态规划之118杨辉三角(第6道)

题目&#xff1a;给定一个非负整数 numRows&#xff0c;生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 题目链接&#xff1a;118. 杨辉三角 - 力扣&#xff08;LeetCode&#xff09; 示例&#xff1a; 解法&#xff1…

【iOS】内存管理五大区

参考博客&#xff1a;iOS内存管理学习第一篇-内存五大区 3.1 OC特性之 内存五大区域 1. 简述 程序要想执行&#xff0c;第一步就需要 被加载到内存中 内存五大区域: 栈区,堆区,BSS段(静态区),常量区(数据段),代码段. 栈区&#xff08;stack&#xff09;由编译器自动分配并释放…

手写Spring框架---MVC实现

目录 预备 自研框架MVC的实现 MVC架构草图&#xff1a; 大致流程 实现思路 自定义注解 JavaBean 请求的拦截-建立DispatcherServlet 责任链处理请求 RequestProcessor矩阵 Render矩阵 预备 在DispatcherServlet&#xff1a; 解析请求路径和请求方法依赖容器&#xf…

最全的 Spring 依赖注入方式,你都会了吗?

Spring 正如其名字&#xff0c;给开发者带来了春天&#xff0c;Spring 是为解决企业级应用开发的复杂性而设计的一款框架&#xff0c;其设计理念就是&#xff1a;简化开发。 Spring 框架中最核心思想就是&#xff1a; IOC&#xff08;控制反转&#xff09;&#xff1a; 即转移…

ChatGPT 最佳实践指南之:使用外部工具

Use external tools 使用外部工具 Compensate for the weaknesses of GPTs by feeding them the outputs of other tools. For example, a text retrieval system can tell GPTs about relevant documents. A code execution engine can help GPTs do math and run code. If a …

45、Spring Boot自动配置原理

Spring Boot自动配置原理 lmport Configuration Spring spi 自动配置类由各个starter提供&#xff0c;使用Configuration Bean定义配置类&#xff0c;放到META-INF/spring.factories下使用Spring spi扫描META-INF/spring.factories下的配置类使用lmport导入自动配置类

通讯录管理系统--进阶(动态开辟内存+保存数据到文件)

文章目录 动态开辟内存优化改进通讯录类型改进初始化通讯录函数改进添加联系人的函数增加销毁通讯录信息的函数 保存数据到文件优化保存通讯录数据到文件读取数据到通讯录 完整的代码展示 在 C语言实现通讯录的所有基本功能详细代码分析中&#xff0c;我们已经实现了通讯录的基…

Linux系统编程:文件系统和inode

目录 一. 磁盘的结构和读写数据的方式 1.1 磁盘级文件和内存级文件 1.2 磁盘的物理结构 1.3 访问磁盘数据的方式 二. 磁盘文件系统 2.1 磁盘的分区管理方法 2.2 文件名和inode的关系 三. 结合文件系统对文件创建和删除的相关问题的理解 3.1 文件创建时操作系统进行的工…