pycharm中python环境设置:
打开左上角File ---> Settings ---> 如下图 ---> Add 选择合适的python版本,进行环境设置
UNet训练自己的数据集:
一、训练自己的数据集
1、本文使用VOC格式进行训练。
2、训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的SegmentationClass中。
3、训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
4、在训练前利用voc_annotation.py文件生成对应的txt。
5、注意修改train.py的num_classes为分类个数+1。
6、运行train.py即可开始训练。
二、使用自己训练的权重
1. 按照训练步骤训练。
2. 在unet.py文件里面,在如下部分修改model_path、backbone和num_classes使其对应训练好的文件;**model_path对应logs文件夹下面的权值文件**。
```python
_defaults = {
#-------------------------------------------------------------------#
# model_path指向logs文件夹下的权值文件
# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
# 验证集损失较低不代表miou较高,仅代表该权值在验证集上泛化性能较好。
#-------------------------------------------------------------------#
"model_path" : 'model_data/unet_vgg_voc.pth',
#--------------------------------#
# 所需要区分的类的个数+1
#--------------------------------#
"num_classes" : 21,
#--------------------------------#
# 所使用的的主干网络:vgg、resnet50
#--------------------------------#
"backbone" : "vgg",
#--------------------------------#
# 输入图片的大小
#--------------------------------#
"input_shape" : [512, 512],
#--------------------------------#
# blend参数用于控制是否
# 让识别结果和原图混合
#--------------------------------#
"blend" : True,
#--------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#--------------------------------#
"cuda" : True,
}
```
3. 运行predict.py,输入 待预测的图片路径
```python
img/street.jpg
```
4. 在predict.py里面进行设置可以进行fps测试和video视频检测。
### 评估步骤
1、设置get_miou.py里面的num_classes为预测的类的数量加1。
2、设置get_miou.py里面的name_classes为需要去区分的类别。
3、运行get_miou.py即可获得miou大小。