[LangChain核心模块]模型的输入和输出->Prompts

news2025/1/10 0:20:33

⭐作者介绍:大二本科网络工程专业在读,持续学习Java,努力输出优质文章
⭐作者主页:@逐梦苍穹
⭐所属专栏:人工智能。

目录

  • 1、简介
  • 2、Prompts(提示)
    • 2.1、Prompt templates
      • 2.1.1、创建提示模板
      • 2.1.2、聊天提示模板
      • 2.1.3、Few-shot prompt templates
      • 2.1.4、格式模板输出
      • 2.1.5、模板格式
      • 2.1.6、MessagePromptTemplate 的类型
      • 2.1.7、部分提示模板
      • 2.1.8、组合
      • 2.1.9、验证模板
    • 2.2、example_selectors
      • 2.2.1、自定义示例选择器
      • 2.2.2、选择长度
      • 2.2.3、相似度选择

1、简介

任何语言模型应用的核心元素是模型的输入和输出。LangChain提供了与任何语言模型进行接口交互的基本组件。
● 提示 prompts: 将模型输入模板化、动态选择和管理
● 语言模型 models: 通过常见接口调用语言模型
● 输出解析器 output_parsers: 从模型输出中提取信息
在这里插入图片描述

2、Prompts(提示)

编写模型的新方式是通过提示。 一个提示(prompt) 指的是输入模型的内容。 这个输入通常由多个组件构成。 LangChain 提供了多个类和函数,使构建和处理提示变得简单。
● 提示模板(Prompt templates): 为模型输入添加参数
● 示例选择器(Example selectors): 动态选择在提示中包含的示例

2.1、Prompt templates

语言模型以文本作为输入->该文本通常称为提示(prompt)。
通常,这不仅仅是一个硬编码的字符串,而是一个模板、一些示例和用户输入的组合。
LangChain 提供了几个类和函数,使得构建和使用提示变得容易。
什么是提示模板?
提示模板是指一种可复制的生成提示的方式。它包含一个文本字符串(“模板”),可以从最终用户那里接收一组参数并生成提示。
提示模板可以包含:
● 向语言模型提供指令,
● 一组少样本示例,以帮助语言模型生成更好的回复,
● 向语言模型提出问题。
一个简单示例:

from langchain import PromptTemplate


template = """/
You are a naming consultant for new companies.
What is a good name for a company that makes {product}?
"""

prompt = PromptTemplate.from_template(template)
prompt.format(product="colorful socks")

在这里插入图片描述

2.1.1、创建提示模板

可以使用 PromptTemplate 类创建简单的硬编码提示。提示模板可以接受任意数量的输入变量,并可以格式化生成提示。

from langchain import PromptTemplate

# An example prompt with no input variables
no_input_prompt = PromptTemplate(input_variables=[], template="Tell me a joke.")
no_input_prompt.format()
# -> "Tell me a joke."

# An example prompt with one input variable
one_input_prompt = PromptTemplate(input_variables=["adjective"], template="Tell me a {adjective} joke.")
one_input_prompt.format(adjective="funny")
# -> "Tell me a funny joke."

# An example prompt with multiple input variables
multiple_input_prompt = PromptTemplate(
    input_variables=["adjective", "content"], 
    template="Tell me a {adjective} joke about {content}."
)
multiple_input_prompt.format(adjective="funny", content="chickens")
# -> "Tell me a funny joke about chickens."

在这里插入图片描述

如果不想手动指定 input_variables,也可以使用 from_template 类方法创建 PromptTemplate。LangChain 将根据传递的 template 自动推断 input_variables。

template = "Tell me a {adjective} joke about {content}."

prompt_template = PromptTemplate.from_template(template)
prompt_template.input_variables

# -> ['adjective', 'content']
prompt_template.format(adjective="funny", content="chickens")
# -> Tell me a funny joke about chickens.

在这里插入图片描述

2.1.2、聊天提示模板

聊天模型以聊天消息列表作为输入 - 这个列表通常称为 prompt。 这些聊天消息与原始字符串不同(您会将其传递给LLM模型),因为每个消息都与一个 role 相关联。
例如,在OpenAI的聊天补全 API中,一个聊天消息可以与 AI、人类或系统角色相关联。模型应更密切地遵循系统聊天消息的指令。
LangChain 提供了几个提示模板,以便更轻松地构建和处理提示。在查询聊天模型时,建议您使用这些与聊天相关的提示模板,以充分发挥底层聊天模型的潜力。

from langchain.prompts import (
    ChatPromptTemplate,
    PromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

2.1.3、Few-shot prompt templates

少样本示例的提示模板 Few-shot prompt templates
少样本提示模板可以从一组示例或示例选择器对象构建。
用例
在本教程中,我们将为自问自答与搜索配置少量示例。
使用示例集
创建示例集:
首先,创建一个少量示例的列表。每个示例应该是一个字典,其中键是输入变量,值是这些输入变量的值。

from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate

examples = [
  {
    "question": "Who lived longer, Muhammad Ali or Alan Turing?",
    "answer": 
"""
Are follow up questions needed here: Yes.
Follow up: How old was Muhammad Ali when he died?
Intermediate answer: Muhammad Ali was 74 years old when he died.
Follow up: How old was Alan Turing when he died?
Intermediate answer: Alan Turing was 41 years old when he died.
So the final answer is: Muhammad Ali
"""
  },
  {
    "question": "When was the founder of craigslist born?",
    "answer": 
"""
Are follow up questions needed here: Yes.
Follow up: Who was the founder of craigslist?
Intermediate answer: Craigslist was founded by Craig Newmark.
Follow up: When was Craig Newmark born?
Intermediate answer: Craig Newmark was born on December 6, 1952.
So the final answer is: December 6, 1952
"""
  },
  {
    "question": "Who was the maternal grandfather of George Washington?",
    "answer":
"""
Are follow up questions needed here: Yes.
Follow up: Who was the mother of George Washington?
Intermediate answer: The mother of George Washington was Mary Ball Washington.
Follow up: Who was the father of Mary Ball Washington?
Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
So the final answer is: Joseph Ball
"""
  },
  {
    "question": "Are both the directors of Jaws and Casino Royale from the same country?",
    "answer":
"""
Are follow up questions needed here: Yes.
Follow up: Who is the director of Jaws?
Intermediate Answer: The director of Jaws is Steven Spielberg.
Follow up: Where is Steven Spielberg from?
Intermediate Answer: The United States.
Follow up: Who is the director of Casino Royale?
Intermediate Answer: The director of Casino Royale is Martin Campbell.
Follow up: Where is Martin Campbell from?
Intermediate Answer: New Zealand.
So the final answer is: No
"""
  }
]

创建少量示例的格式化程序
配置一个将少量示例格式化为字符串的格式化程序。该格式化程序应该是一个 PromptTemplate 对象。

example_prompt = PromptTemplate(input_variables=["question", "answer"], template="Question: {question}\n{answer}")

print(example_prompt.format(**examples[0]))

在这里插入图片描述

将示例和格式化程序提供给 FewShotPromptTemplate
最后,创建一个 FewShotPromptTemplate 对象。该对象接受少量示例和少量示例的格式化程序。

prompt = FewShotPromptTemplate(
    examples=examples, 
    example_prompt=example_prompt, 
    suffix="Question: {input}", 
    input_variables=["input"]
)

print(prompt.format(input="Who was the father of Mary Ball Washington?"))
Question: Who lived longer, Muhammad Ali or Alan Turing?
    
    Are follow up questions needed here: Yes.
    Follow up: How old was Muhammad Ali when he died?
    Intermediate answer: Muhammad Ali was 74 years old when he died.
    Follow up: How old was Alan Turing when he died?
    Intermediate answer: Alan Turing was 41 years old when he died.
    So the final answer is: Muhammad Ali
    
    
    Question: When was the founder of craigslist born?
    
    Are follow up questions needed here: Yes.
    Follow up: Who was the founder of craigslist?
    Intermediate answer: Craigslist was founded by Craig Newmark.
    Follow up: When was Craig Newmark born?
    Intermediate answer: Craig Newmark was born on December 6, 1952.
    So the final answer is: December 6, 1952
    
    
    Question: Who was the maternal grandfather of George Washington?
    
    Are follow up questions needed here: Yes.
    Follow up: Who was the mother of George Washington?
    Intermediate answer: The mother of George Washington was Mary Ball Washington.
    Follow up: Who was the father of Mary Ball Washington?
    Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
    So the final answer is: Joseph Ball
    
    
    Question: Are both the directors of Jaws and Casino Royale from the same country?
    
    Are follow up questions needed here: Yes.
    Follow up: Who is the director of Jaws?
    Intermediate Answer: The director of Jaws is Steven Spielberg.
    Follow up: Where is Steven Spielberg from?
    Intermediate Answer: The United States.
    Follow up: Who is the director of Casino Royale?
    Intermediate Answer: The director of Casino Royale is Martin Campbell.
    Follow up: Where is Martin Campbell from?
    Intermediate Answer: New Zealand.
    So the final answer is: No
    
    
    Question: Who was the father of Mary Ball Washington?

使用示例选择器
将示例提供给 ExampleSelector
我们将重用前一节中的示例集和格式化程序。但是,我们不会直接将示例提供给 FewShotPromptTemplate 对象,而是将它们提供给一个 ExampleSelector 对象。
在本教程中,我们将使用 SemanticSimilarityExampleSelector 类。该类根据输入与少量示例的相似性选择少量示例。它使用嵌入模型计算输入与少量示例之间的相似性,以及向量存储执行最近邻搜索。

from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings


example_selector = SemanticSimilarityExampleSelector.from_examples(
    # This is the list of examples available to select from.
    examples,
    # This is the embedding class used to produce embeddings which are used to measure semantic similarity.
    OpenAIEmbeddings(),
    # This is the VectorStore class that is used to store the embeddings and do a similarity search over.
    Chroma,
    # This is the number of examples to produce.
    k=1
)

# Select the most similar example to the input.
question = "Who was the father of Mary Ball Washington?"
selected_examples = example_selector.select_examples({"question": question})
print(f"Examples most similar to the input: {question}")
for example in selected_examples:
    print("\n")
    for k, v in example.items():
        print(f"{k}: {v}")
Running Chroma using direct local API.
   Using DuckDB in-memory for database. Data will be transient.
   Examples most similar to the input: Who was the father of Mary Ball Washington?
   
   
   question: Who was the maternal grandfather of George Washington?
   answer: 
   Are follow up questions needed here: Yes.
   Follow up: Who was the mother of George Washington?
   Intermediate answer: The mother of George Washington was Mary Ball Washington.
   Follow up: Who was the father of Mary Ball Washington?
   Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
   So the final answer is: Joseph Ball

将示例选择器提供给 FewShotPromptTemplate
最后,创建一个 FewShotPromptTemplate 对象。该对象接受示例选择器和少量示例的格式化程序。

prompt = FewShotPromptTemplate(
    example_selector=example_selector, 
    example_prompt=example_prompt, 
    suffix="Question: {input}", 
    input_variables=["input"]
)

print(prompt.format(input="Who was the father of Mary Ball Washington?"))
Question: Who was the maternal grandfather of George Washington?
    
    Are follow up questions needed here: Yes.
    Follow up: Who was the mother of George Washington?
    Intermediate answer: The mother of George Washington was Mary Ball Washington.
    Follow up: Who was the father of Mary Ball Washington?
    Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
    So the final answer is: Joseph Ball
    
    
    Question: Who was the father of Mary Ball Washington?

2.1.4、格式模板输出

格式模板输出->chat_prompt.format:
格式方法的输出可作为字符串、消息列表和ChatPromptValue使用
作为字符串:

output = chat_prompt.format(input_language="English",output_language="French", text="I love programming.")
output
'System: You are a helpful assistant that translates English to French.\nHuman: I love programming.'
# or alternatively
output_2 = chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_string()

assert output == output_2

作为ChatPromptValue:

chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.")
ChatPromptValue(messages=[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={})])

作为消息对象列表:

chat_prompt.format_prompt(input_language="English", output_language="French", text="I love programming.").to_messages()
[SystemMessage(content='You are a helpful assistant that translates English to French.', additional_kwargs={}),
	HumanMessage(content='I love programming.', additional_kwargs={})
]

2.1.5、模板格式

模板格式 PromptTemplate
默认情况下,PromptTemplate会将提供的模板视为Python f-string。您可以通过template_format参数指定其他模板格式:

# Make sure jinja2 is installed before running this

jinja2_template = "Tell me a {{ adjective }} joke about {{ content }}"
prompt_template = PromptTemplate.from_template(template=jinja2_template, template_format="jinja2")

prompt_template.format(adjective="funny", content="chickens")
# -> Tell me a funny joke about chickens.

目前,PromptTemplate仅支持jinja2和f-string模板格式。如果您希望使用其他模板格式,请随时在Github页面上提交问题。

2.1.6、MessagePromptTemplate 的类型

LangChain 提供了不同类型的 MessagePromptTemplate。最常用的是 AIMessagePromptTemplate、SystemMessagePromptTemplate 和 HumanMessagePromptTemplate,分别用于创建 AI 消息、系统消息和人工消息。
然而,在对话模型支持使用任意角色的情况下,您可以使用 ChatMessagePromptTemplate,该模板允许用户指定角色名。

from langchain.prompts import ChatMessagePromptTemplate

prompt = "May the {subject} be with you"

chat_message_prompt = ChatMessagePromptTemplate.from_template(role="Jedi", template=prompt)
chat_message_prompt.format(subject="force")
ChatMessage(content='May the force be with you', additional_kwargs={}, role='Jedi')

LangChain 还提供了 MessagesPlaceholder,使您完全控制格式化过程中要呈现的消息。当您不确定应该为消息提示模板使用什么角色或者希望在格式化过程中插入消息列表时,这将非常有用。

from langchain.prompts import MessagesPlaceholder

human_prompt = "Summarize our conversation so far in {word_count} words."
human_message_template = HumanMessagePromptTemplate.from_template(human_prompt)

chat_prompt = ChatPromptTemplate.from_messages([MessagesPlaceholder(variable_name="conversation"), human_message_template])
human_message = HumanMessage(content="What is the best way to learn programming?")
ai_message = AIMessage(content="""\
1. Choose a programming language: Decide on a programming language that you want to learn.

2. Start with the basics: Familiarize yourself with the basic programming concepts such as variables, data types and control structures.

3. Practice, practice, practice: The best way to learn programming is through hands-on experience\
""")

chat_prompt.format_prompt(conversation=[human_message, ai_message], word_count="10").to_messages()
[HumanMessage(content='What is the best way to learn programming?', additional_kwargs={}),
	AIMessage(content='1. Choose a programming language: Decide on a programming language \
 				that you want to learn. \n\n2. Start with the basics: Familiarize yourself \
     			with the basic programming concepts such as variables, data types and control \
        		structures.\n\n3. Practice, practice, practice: The best way to learn programming\
          		is through hands-on experience', additional_kwargs={}),
 	HumanMessage(content='Summarize our conversation so far in 10 words.', additional_kwargs={})
]

2.1.7、部分提示模板

部分提示模板 partial
与其他方法一样,"部分化"提示模板可以很有意义 - 例如,传入所需值的子集,以创建仅期望剩余子集值的新提示模板。
LangChain提供了两种方式来支持这种操作:
使用字符串值进行部分格式化。
使用返回字符串值的函数进行部分格式化。
这两种不同的方式支持不同的用例。在下面的示例中,我们将介绍两种用例的原因以及如何在LangChain中执行它们。
部分使用字符串
希望部分填充提示模板的一个常见用例是如果您在获取某些变量之前获得了其他变量。例如,假设您有一个需要两个变量 foo 和 baz 的提示模板。如果您在链条中早期获得了 foo 的值,但稍后才获得 baz 的值,那么等到两个变量在同一个位置时将它们传递给提示模板可能会很麻烦。相反,您可以使用 foo 的值部分填充提示模板,然后传递部分填充的提示模板,并只使用它。下面是一个示例:

from langchain.prompts import PromptTemplate
prompt = PromptTemplate(template="{foo}{bar}", input_variables=["foo", "bar"])
partial_prompt = prompt.partial(foo="foo");
print(partial_prompt.format(bar="baz"))
#foobaz

您还可以使用部分填充的变量初始化提示。

prompt = PromptTemplate(template="{foo}{bar}", input_variables=["bar"], partial_variables={"foo": "foo"})
print(prompt.format(bar="baz"))
#foobaz

部分使用函数
另一个常见用途是使用函数进行部分填充。这种情况是当您知道您总是希望以常见方式获取某个变量时使用的。一个典型的例子是日期或时间。想象一下,您有一个始终希望具有当前日期的提示。您不能在提示中硬编码它,并且将其与其他输入变量一起传递有点麻烦。在这种情况下,使用一个始终返回当前日期的函数来部分填充提示非常方便。

from datetime import datetime

def _get_datetime():
    now = datetime.now()
    return now.strftime("%m/%d/%Y, %H:%M:%S")
prompt = PromptTemplate(
    template="Tell me a {adjective} joke about the day {date}", 
    input_variables=["adjective", "date"]
);
partial_prompt = prompt.partial(date=_get_datetime)
print(partial_prompt.format(adjective="funny"))
#Tell me a funny joke about the day 02/27/2023, 22:15:16

您还可以使用部分填充的变量初始化提示,这在这个工作流中通常更合理。

prompt = PromptTemplate(
    template="Tell me a {adjective} joke about the day {date}", 
    input_variables=["adjective"],
    partial_variables={"date": _get_datetime}
);
print(prompt.format(adjective="funny"))
#Tell me a funny joke about the day 02/27/2023, 22:15:16

2.1.8、组合

组合 prompt_composition
本笔记本介绍如何将多个提示组合在一起。当您想要重用提示的部分时,这将非常有用。这可以通过PipelinePrompt完成。PipelinePrompt由两个主要部分组成:
最终提示:这是返回的最终提示
Pipeline提示:这是一个由字符串名称和提示模板组成的元组列表。每个提示模板将被格式化,然后作为具有相同名称的变量传递给未来的提示模板。

from langchain.prompts.pipeline import PipelinePromptTemplate
from langchain.prompts.prompt import PromptTemplate
full_template = """{introduction}

{example}

{start}"""
full_prompt = PromptTemplate.from_template(full_template)
introduction_template = """You are impersonating {person}."""
introduction_prompt = PromptTemplate.from_template(introduction_template)
example_template = """Here's an example of an interaction: 

Q: {example_q}
A: {example_a}"""
example_prompt = PromptTemplate.from_template(example_template)
start_template = """Now, do this for real!

Q: {input}
A:"""
start_prompt = PromptTemplate.from_template(start_template)
input_prompts = [
    ("introduction", introduction_prompt),
    ("example", example_prompt),
    ("start", start_prompt)
]
pipeline_prompt = PipelinePromptTemplate(final_prompt=full_prompt, pipeline_prompts=input_prompts)
pipeline_prompt.input_variables
#['example_a', 'person', 'example_q', 'input']
print(pipeline_prompt.format(
    person="Elon Musk",
    example_q="What's your favorite car?",
    example_a="Telsa",
    input="What's your favorite social media site?"
))
#
You are impersonating Elon Musk.
    Here's an example of an interaction: 
    
    Q: What's your favorite car?
    A: Telsa
    Now, do this for real!
    
    Q: What's your favorite social media site?
    A:

2.1.9、验证模板

验证模板 validate_template
默认情况下,PromptTemplate会通过检查input_variables是否与template中定义的变量匹配来验证template字符串。您可以将validate_template设置为False来禁用此行为。

template = "I am learning langchain because {reason}."

prompt_template = PromptTemplate(template=template,
                                 input_variables=["reason", "foo"]) # ValueError due to extra variables
prompt_template = PromptTemplate(template=template,
                                 input_variables=["reason", "foo"],
                                 validate_template=False) # No error

2.2、example_selectors

示例选择器 example_selectors
如果有大量的示例,可能需要选择哪些示例包含在提示中。示例选择器是负责执行此操作的类。
基本接口定义如下:

class BaseExampleSelector(ABC):
    """Interface for selecting examples to include in prompts."""

    @abstractmethod
    def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
        """Select which examples to use based on the inputs."""

它需要暴露的唯一方法是 select_examples 方法。该方法接受输入变量,然后返回一个示例列表。每个具体的实现可以自行选择这些示例的方式。

2.2.1、自定义示例选择器

自定义示例选择器 ExampleSelector
在本教程中,我们将创建一个自定义示例选择器,该选择器从给定的示例列表中选择每个交替示例。
ExampleSelector必须实现两个方法:
add_example 方法,该方法接受一个示例并将其添加到ExampleSelector中
select_examples 方法,该方法接受输入变量(用于用户输入)并返回要在few shot提示中使用的示例列表。
让我们实现一个自定义的ExampleSelector,它只是随机选择两个示例。
:::{note} 请查看LangChain支持的当前示例选择器实现集合此处。 :::
实现自定义示例选择器

from langchain.prompts.example_selector.base import BaseExampleSelector
from typing import Dict, List
import numpy as np


class CustomExampleSelector(BaseExampleSelector):
    
    def __init__(self, examples: List[Dict[str, str]]):
        self.examples = examples
    
    def add_example(self, example: Dict[str, str]) -> None:
        """Add new example to store for a key."""
        self.examples.append(example)

    def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
        """Select which examples to use based on the inputs."""
        return np.random.choice(self.examples, size=2, replace=False)

使用自定义示例选择器

examples = [
    {"foo": "1"},
    {"foo": "2"},
    {"foo": "3"}
]

# Initialize example selector.
example_selector = CustomExampleSelector(examples)


# Select examples
example_selector.select_examples({"foo": "foo"})
# -> array([{'foo': '2'}, {'foo': '3'}], dtype=object)

# Add new example to the set of examples
example_selector.add_example({"foo": "4"})
example_selector.examples
# -> [{'foo': '1'}, {'foo': '2'}, {'foo': '3'}, {'foo': '4'}]

# Select examples
example_selector.select_examples({"foo": "foo"})
# -> array([{'foo': '1'}, {'foo': '4'}], dtype=object)

2.2.2、选择长度

选择长度 length_based
此示例选择器根据长度选择要使用的示例。当您担心构建的提示长度超过上下文窗口的长度时,这很有用。对于较长的输入,它会选择较少的示例进行包含,而对于较短的输入,它会选择更多。

from langchain.prompts import PromptTemplate
from langchain.prompts import FewShotPromptTemplate
from langchain.prompts.example_selector import LengthBasedExampleSelector


# These are a lot of examples of a pretend task of creating antonyms.
examples = [
    {"input": "happy", "output": "sad"},
    {"input": "tall", "output": "short"},
    {"input": "energetic", "output": "lethargic"},
    {"input": "sunny", "output": "gloomy"},
    {"input": "windy", "output": "calm"},

example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="Input: {input}\nOutput: {output}",
)
example_selector = LengthBasedExampleSelector(
    # These are the examples it has available to choose from.
    examples=examples, 
    # This is the PromptTemplate being used to format the examples.
    example_prompt=example_prompt, 
    # This is the maximum length that the formatted examples should be.
    # Length is measured by the get_text_length function below.
    max_length=25,
    # This is the function used to get the length of a string, which is used
    # to determine which examples to include. It is commented out because
    # it is provided as a default value if none is specified.
    # get_text_length: Callable[[str], int] = lambda x: len(re.split("\n| ", x))
)
dynamic_prompt = FewShotPromptTemplate(
    # We provide an ExampleSelector instead of examples.
    example_selector=example_selector,
    example_prompt=example_prompt,
    prefix="Give the antonym of every input",
    suffix="Input: {adjective}\nOutput:", 
    input_variables=["adjective"],
)
# An example with small input, so it selects all examples.
print(dynamic_prompt.format(adjective="big"))
Give the antonym of every input
    
    Input: happy
    Output: sad
    
    Input: tall
    Output: short
    
    Input: energetic
    Output: lethargic
    
    Input: sunny
    Output: gloomy
    
    Input: windy
    Output: calm
    
    Input: big
    Output:
# An example with long input, so it selects only one example.
long_string = "big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else"
print(dynamic_prompt.format(adjective=long_string))
Give the antonym of every input
    
    Input: happy
    Output: sad
    
    Input: big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else
    Output:
# You can add an example to an example selector as well.
new_example = {"input": "big", "output": "small"}
dynamic_prompt.example_selector.add_example(new_example)
print(dynamic_prompt.format(adjective="enthusiastic"))
Give the antonym of every input
    
    Input: happy
    Output: sad
    
    Input: tall
    Output: short
    
    Input: energetic
    Output: lethargic
    
    Input: sunny
    Output: gloomy
    
    Input: windy
    Output: calm
    
    Input: big
    Output: small
    
    Input: enthusiastic
    Output:

2.2.3、相似度选择

相似度选择 similarity
该对象根据与输入的相似度选择示例。它通过查找具有与输入具有最大余弦相似度的嵌入的示例来实现这一点。

from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import FewShotPromptTemplate, PromptTemplate

example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="Input: {input}\nOutput: {output}",
)
# These are a lot of examples of a pretend task of creating antonyms.
examples = [
    {"input": "happy", "output": "sad"},
    {"input": "tall", "output": "short"},
    {"input": "energetic", "output": "lethargic"},
    {"input": "sunny", "output": "gloomy"},
    {"input": "windy", "output": "calm"},
]
example_selector = SemanticSimilarityExampleSelector.from_examples(
    # This is the list of examples available to select from.
    examples, 
    # This is the embedding class used to produce embeddings which are used to measure semantic similarity.
    OpenAIEmbeddings(), 
    # This is the VectorStore class that is used to store the embeddings and do a similarity search over.
    Chroma, 
    # This is the number of examples to produce.
    k=1
)
similar_prompt = FewShotPromptTemplate(
    # We provide an ExampleSelector instead of examples.
    example_selector=example_selector,
    example_prompt=example_prompt,
    prefix="Give the antonym of every input",
    suffix="Input: {adjective}\nOutput:", 
    input_variables=["adjective"],
)
Running Chroma using direct local API.
    Using DuckDB in-memory for database. Data will be transient.
# Input is a feeling, so should select the happy/sad example
print(similar_prompt.format(adjective="worried"))
Give the antonym of every input
    
    Input: happy
    Output: sad
    
    Input: worried
    Output:
# Input is a measurement, so should select the tall/short example
print(similar_prompt.format(adjective="fat"))
Give the antonym of every input
    
    Input: happy
    Output: sad
    
    Input: fat
    Output:
# You can add new examples to the SemanticSimilarityExampleSelector as well
similar_prompt.example_selector.add_example({"input": "enthusiastic", "output": "apathetic"})
print(similar_prompt.format(adjective="joyful"))
Give the antonym of every input
    
    Input: happy
    Output: sad
    
    Input: joyful
    Output:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/740585.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

避雷针厂家防雷接地解决方案

您是否担心您的建筑物或设施会受到雷电的侵袭?您是否想要一种高效、可靠、经济的避雷解决方案?如果是的话,那么您一定要了解我们的提前放电避雷针DK8-BX10,这是一种采用先进技术和优质材料制造的智能化避雷系统,可以为…

MySQL数据库及安装MySQL

文章目录 一.数据库的基本概念1.数据2.表3.数据库4.数据库管理系统(DBMS)4.1DBMS主要包括以下功能 5.数据库系统原理5.1DBMS的工作模式 二.数据库的发展史1.第一代数据库…

Python微实践 - 布莱切利庄园的秘密

二战时期,英国数学家、计算机科学之父Alan Turing在布莱切利庄园成功破译了德军密码,为赢得世界反法西斯战争的胜利做出了重大贡献。为了表达对前辈先贤的敬意,本微实践取名为“布莱切利庄园的秘密”。 本文引用自作者编写的下述图书; 本文允…

西安邮电大学-2020计算机科学与技术培养方案【笔记】

2020计算机科学与技术培养方案【笔记】 前言说明2020计算机科学与技术培养方案培养目标培养要求课程设置与学分分布1. 通识教育类 67 学分 √(1) 公共基础课程 40 学分1) 必修课 38 学分2) 选修课 2 学分 (2) 自然科学基础课程 20 学分1) 必修课 20 学分2) 选修课 0 学分 (3) 综…

算法训练营第三十二天||122.买卖股票的最佳时机II ● 55. 跳跃游戏 ● 45.跳跃游戏II

122.买卖股票的最佳时机 本题首先要清楚两点: 只有一只股票!当前只有买股票或者卖股票的操作 想获得利润至少要两天为一个交易单元。 #贪心算法 这道题目可能我们只会想,选一个低的买入,再选个高的卖,再选一个低的…

7-2 九牛一毛

7-2 九牛一毛 分数 5 全屏浏览题目 切换布局 作者 陈越 单位 浙江大学 这是一道脑筋急转弯题:猪肉一斤 15 元,鸡肉一斤 20 元,那么一毛钱能买多少头牛? 答案是:9 —— 因为“九牛一毛”。 本题就请你按照这个逻辑…

百度地图 —— 给InfoWindow文本添加点击事件

前言: 需求描述:点击Marker标记出现infoWindow文本框,点击文本框中的红色框中的文字,出现侧边栏 代码实现:

js-二维子矩阵的和

// 给定一个二维矩阵 matrix,以下类型的多个请求: // 计算其子矩形范围内元素的总和,该子矩阵的左上角为(row1, col1) ,右下角为(row2, col2) 。// 实现 NumMatrix 类:// NumMatrix(int[][] matrix) 给定整数矩阵 matr…

刷题日记07《回溯算法》

题目描述 力扣https://leetcode.cn/problems/VvJkup/ 给定一个不含重复数字的整数数组 nums ,返回其 所有可能的全排列 。可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2…

STM32 Proteus仿真ILI9341显示电桥电子秤重量测量差分放大电路 -0062

STM32 Proteus仿真ILI9341显示电桥电子秤重量测量差分放大电路 -0062 Proteus仿真小实验: STM32 Proteus仿真ILI9341显示电桥电子秤重量测量差分放大电路 -0062 功能: 硬件组成:STM32F103R6单片机 ILI9341TFT显示器4个电位器组成的电桥电…

好用的文献阅读插件(Easy Scholar、EasyPubMedicine、Sci-Hub X Now!)

目录 一、Easy Scholar 二、EasyPubMedicine 一、Easy Scholar Easy Scholar:自动显示期刊等级,帮助筛选优质论文。 安装: 点击浏览器右上角的“。。。”,选择“扩展”。 点击打开加载项 在浏览器的扩展商店中搜索“easy sch…

MyBatis 中如何使用缓存

MyBatis 中如何使用缓存 MyBatis 是一个基于 Java 的持久层框架,它提供了多种方式来使用缓存,包括一级缓存和二级缓存。本文将介绍 MyBatis 中常见的缓存使用方式及其使用方法。 1. 一级缓存 MyBatis 中的一级缓存是指 SqlSession 的缓存,它…

Android 圆环统计图(带外延折线可点击)

需求先看UI效果图吧 看到这肯定去找轮子,找了半天,没找到相似的,大部分搜到的都是点击外凸,而这个UI是内凸,其实外凸内凸区别还不小,没找到一样的,于是乎,和iOS说好了要不就放弃吧&…

途乐证券-充电性能最高提升3.8倍,固态电池有新突破!

固态电池当时处于起步阶段,工业化仍需时刻。组织预计2030年商场空间有望达200亿元。 固态电池技能继续取得突破发展 过去10年,液态锂离子电池的能量密度现已提高了2倍~3倍,现在现已挨近理论上限。而全固态电池运用固体电解质替代了传统锂离子…

科技资讯|苹果Vision Pro预计2024年末全球发售

据彭博社记者古尔曼消息,苹果首款头显Vision Pro计划于2024年初在美国市场指定店铺进行开售,这些商店将会有专属区域用于产品演示,配备座位、配件和测量尺寸的工具等。知情人士透露,将有270家美国的苹果商店会销售Vision Pro&…

简述MySQL体系结构以及安装部署MySQL

目录 一、简述MySQL体系结构 1、连接层: 2、SQL层: 3、存储引擎层: 4、物理文件层: 5、一条SQL语句执行过程: 二、安装部署MySQL(使用yum以及通用二进制方式) 1、前期准备 1.1、关闭防火…

金九银十Java八股文面试题整理(含阿里、腾迅大厂java面试真题)

前言 看到了许多朋友在焦急的准备“金九银十”跳槽面试,甚至很多即将毕业的大学生都在备战秋招,对于学历还算优秀的大学生来说,这是一次离大厂最近的机会,毕竟是应届毕业生,不会对技术有非常严格的要求。 而对于工作…

注解开发配置实例

对比一下xm的配置: 新:注解开发,现在任何框架都有两套配置,一套xml配置,一套注解配置 现在我想把user Dao 和user serve 放到spring 中进行配置 service业务层 看到reipaositerei,就是我们Dao 层 用他来标注初始化方…

WORD模板替换,将文件给前端下载

1.word模板设计填充字段加{{填充字段名}} 2.后端依赖 <poi-tl.version>1.7.3</poi-tl.version> <poi.version>4.1.2</poi.version> <dependency><groupId>com.deepoove</groupId><artifactId>poi-tl</artifactId>&l…

基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目

功能演示 摘要&#xff1a;手势识别是一种通过技术手段识别视频图像中人物手势的技术。本文详细介绍了手势识别实现的技术原理&#xff0c;同时基于python与pyqt开发了一款带UI界面的手势识别系统软件&#xff0c;以便于进行结果显示。手势识别采用了mediapipe的深度学习算法进…