ChatGPT原理解析-张俊林

news2024/11/15 6:06:17

本文将从以下几个方面展开:

  1. 引言

  2. ChatGPT的技术原理

引言

作为智能对话系统,ChatGPT最近两天爆火,都火出技术圈了,网上到处都在转ChatGPT相关的内容和测试例子,效果确实很震撼。我记得上一次能引起如此轰动的AI技术,NLP领域是GPT 3发布,那都是两年半前的事了,当时人工智能如日中天如火如荼的红火日子,今天看来恍如隔世;多模态领域则是以DaLL E2、Stable Diffusion为代表的Diffusion Model,这是最近大半年火起来的AIGC模型;而今天,AI的星火传递到了ChatGPT手上,它毫无疑问也属于AIGC范畴。所以说,在AI泡沫破裂后处于低谷期的今天,AIGC确实是给AI续命的良药,当然我们更期待估计很快会发布的GPT 4,愿OpenAI能继续撑起局面,给行业带来一丝暖意。

说回ChatGPT,例子就不举了,在网上漫山遍野都是,我们主要从技术角度来聊聊。那么,ChatGPT到底是采用了怎样的技术,才能做到如此超凡脱俗的效果?既然chatGPT功能如此强大,那么它可以取代Google、百度等现有搜索引擎吗?如果能,那是为什么,如果不能,又是为什么?

本文试图从我个人理解的角度,来尝试回答上述问题,很多个人观点,偏颇难免,还请谨慎参考。我们首先来看看ChatGPT到底做了什么才获得如此好的效果。

ChatGPT的技术原理

整体技术路线上,ChatGPT在效果强大的GPT 3.5大规模语言模型(LLM,Large Language Model)基础上,引入“人工标注数据+强化学习”(RLHF,Reinforcement Learning from Human Feedback ,这里的人工反馈其实就是人工标注数据)来不断Fine-tune预训练语言模型,主要目的是让LLM模型学会理解人类的命令指令的含义(比如给我写一段小作文生成类问题、知识回答类问题、头脑风暴类问题等不同类型的命令),以及让LLM学会判断对于给定的prompt输入指令(用户的问题),什么样的答案是优质的(富含信息、内容丰富、对用户有帮助、无害、不包含歧视信息等多种标准)。

在“人工标注数据+强化学习”框架下,具体而言,ChatGPT的训练过程分为以下三个阶段:

ChatGPT:第一阶段

第一阶段:冷启动阶段的监督策略模型。靠GPT 3.5本身,尽管它很强,但是它很难理解人类不同类型指令中蕴含的不同意图,也很难判断生成内容是否是高质量的结果。为了让GPT 3.5初步具备理解指令中蕴含的意图,首先会从测试用户提交的prompt(就是指令或问题)中随机抽取一批,靠专业的标注人员,给出指定prompt的高质量答案,然后用这些人工标注好的<prompt,answer>数据来Fine-tune GPT 3.5模型。经过这个过程,我们可以认为GPT 3.5初步具备了理解人类prompt中所包含意图,并根据这个意图给出相对高质量回答的能力,但是很明显,仅仅这样做是不够的。

ChatGPT:第二阶段

第二阶段:训练回报模型(Reward Model,RM)。这个阶段的主要目的是通过人工标注训练数据,来训练回报模型。具体而言,随机抽样一批用户提交的prompt(大部分和第一阶段的相同),使用第一阶段Fine-tune好的冷启动模型,对于每个prompt,由冷启动模型生成K个不同的回答,于是模型产生出了<prompt,answer1>,<prompt,answer2>….<prompt,answerK>数据。之后,标注人员对K个结果按照很多标准(上面提到的相关性、富含信息性、有害信息等诸多标准)综合考虑进行排序,给出K个结果的排名顺序,这就是此阶段人工标注的数据。

接下来,我们准备利用这个排序结果数据来训练回报模型,采取的训练模式其实就是平常经常用到的pair-wise learning to rank。对于K个排序结果,两两组合,形成 个训练数据对,ChatGPT采取pair-wise loss来训练Reward Model。RM模型接受一个输入<prompt,answer>,给出评价回答质量高低的回报分数Score。对于一对训练数据<answer1,answer2>,我们假设人工排序中answer1排在answer2前面,那么Loss函数则鼓励RM模型对<prompt,answer1>的打分要比<prompt,answer2>的打分要高。

归纳下:在这个阶段里,首先由冷启动后的监督策略模型为每个prompt产生K个结果,人工根据结果质量由高到低排序,以此作为训练数据,通过pair-wise learning to rank模式来训练回报模型。对于学好的RM模型来说,输入<prompt,answer>,输出结果的质量得分,得分越高说明产生的回答质量越高。

chatGPT:第三阶段

第三阶段:采用强化学习来增强预训练模型的能力。本阶段无需人工标注数据,而是利用上一阶段学好的RM模型,靠RM打分结果来更新预训练模型参数。具体而言,首先,从用户提交的prompt里随机采样一批新的命令(指的是和第一第二阶段不同的新的prompt,这个其实是很重要的,对于提升LLM模型理解instruct指令的泛化能力很有帮助),且由冷启动模型来初始化PPO模型(Proximal Policy Optimization(PPO)算法原理及实现!_baidu_huihui的博客-CSDN博客_ppo模型)的参数。然后,对于随机抽取的prompt,使用PPO模型生成回答answer, 并用上一阶段训练好的RM模型给出answer质量评估的回报分数score,这个回报分数就是RM赋予给整个回答(由单词序列构成)的整体reward。有了单词序列的最终回报,就可以把每个单词看作一个时间步,把reward由后往前依次传递,由此产生的策略梯度可以更新PPO模型参数。这是标准的强化学习过程,目的是训练LLM产生高reward的答案,也即是产生符合RM标准的高质量回答。

如果我们不断重复第二和第三阶段,很明显,每一轮迭代都使得LLM模型能力越来越强。因为第二阶段通过人工标注数据来增强RM模型的能力,而第三阶段,经过增强的RM模型对新prompt产生的回答打分会更准,并利用强化学习来鼓励LLM模型学习新的高质量内容,这起到了类似利用伪标签扩充高质量训练数据的作用,于是LLM模型进一步得到增强。显然,第二阶段和第三阶段有相互促进的作用,这是为何不断迭代会有持续增强效果的原因。

尽管如此,我觉得第三阶段采用强化学习策略,未必是ChatGPT模型效果特别好的主要原因。假设第三阶段不采用强化学习,换成如下方法:类似第二阶段的做法,对于一个新的prompt,冷启动模型可以产生k个回答,由RM模型分别打分,我们选择得分最高的回答,构成新的训练数据<prompt,answer>,去fine-tune LLM模型。假设换成这种模式,我相信起到的作用可能跟强化学习比,虽然没那么精巧,但是效果也未必一定就差很多。第三阶段无论采取哪种技术模式,本质上很可能都是利用第二阶段学会的RM,起到了扩充LLM模型高质量训练数据的作用。

以上是ChatGPT的训练流程,主要参考自instructGPT的论文,ChatGPT是改进的instructGPT,改进点主要在收集标注数据方法上有些区别,在其它方面,包括在模型结构和训练流程等方面基本遵循instructGPT。可以预见的是,这种Reinforcement Learning from Human Feedback技术会快速蔓延到其它内容生成方向,比如一个很容易想到的,类似“A machine translation model based on Reinforcement Learning from Human Feedback”这种,其它还有很多。但是,我个人认为,在NLP的某个具体的内容生成领域再采用这个技术意义应该已经不大了,因为chatGPT本身能处理的任务类型非常多样化,基本涵盖了NLP生成的很多子领域,所以某个NLP子领域如果再单独采用这个技术其实已经不具备太大价值,因为它的可行性可以认为已经被chatGPT验证了。如果把这个技术应用在比如图片、音频、视频等其它模态的生成领域,可能是更值得探索的方向,也许不久后我们就会看到类似“A XXX diffusion model based on Reinforcement Learning from Human Feedback”,诸如此类,这类工作应该还是很有意义的。

另外一个值得关注的采取类似技术的工作是DeepMind的sparrow,这个工作发表时间稍晚于instructGPT,如果你仔细分析的话,大的技术思路和框架与instructGPT的三阶段基本类似,不过明显sparrow在人工标注方面的质量和工作量是不如instructGPT的。反过来,我觉得sparrow里把回报模型分为两个不同RM的思路,是优于instructGPT的,至于原因在下面小节里会讲。

chatGPT能否取代Google、百度等传统搜索引擎

既然看上去chatGPT几乎无所不能地回答各种类型的prompt,那么一个很自然的问题就是:ChatGPT或者未来即将面世的GPT4,能否取代Google、百度这些传统搜索引擎呢?我个人觉得目前应该还不行,但是如果从技术角度稍微改造一下,理论上是可以取代传统搜索引擎的。

为什么说目前形态的chatGPT还不能取代搜索引擎呢?主要有三点原因:首先,对于不少知识类型的问题,chatGPT会给出看上去很有道理,但是事实上是错误答案的内容(参考上图的例子(from @Gordon Lee),ChatGPT的回答看着胸有成竹,像我这么没文化的基本看了就信了它,回头查了下这首词里竟然没这两句),考虑到对于很多问题它又能回答得很好,这将会给用户造成困扰:如果我对我提的问题确实不知道正确答案,那我是该相信ChatGPT的结果还是不该相信呢?此时你是无法作出判断的。这个问题可能是比较要命的。其次,ChatGPT目前这种基于GPT大模型基础上进一步增加标注数据训练的模式,对于LLM模型吸纳新知识是非常不友好的。新知识总是在不断出现,而出现一些新知识就去重新预训练GPT模型是不现实的,无论是训练时间成本还是金钱成本,都不可接受。如果对于新知识采取Fine-tune的模式,看上去可行且成本相对较低,但是很容易产生新数据的引入导致对原有知识的灾难遗忘问题,尤其是短周期的频繁fine-tune,会使这个问题更为严重。所以如何近乎实时地将新知识融入LLM是个非常有挑战性的问题。其三,ChatGPT或GPT4的训练成本以及在线推理成本太高,导致如果面向真实搜索引擎的以亿记的用户请求,假设继续采取免费策略,OpenAI无法承受,但是如果采取收费策略,又会极大减少用户基数,是否收费是个两难决策,当然如果训练成本能够大幅下降,则两难自解。以上这三个原因,导致目前ChatGPT应该还无法取代传统搜索引擎。

那么这几个问题,是否可以解决呢?其实,如果我们以ChatGPT的技术路线为主体框架,再吸纳其它对话系统采用的一些现成的技术手段,来对ChatGPT进行改造,从技术角度来看,除了成本问题外的前两个技术问题,目前看是可以得到很好地解决。我们只需要在ChatGPT的基础上,引入sparrow系统以下能力:基于retrieval结果的生成结果证据展示,以及引入LaMDA系统的对于新知识采取retrieval模式,那么前面提到的新知识的及时引入,以及生成内容可信性验证,基本就不是什么大问题。

基于以上考虑,在上图中展示出了我心目中下一代搜索引擎的整体结构:它其实是目前的传统搜索引擎+ChatGPT的双引擎结构,ChatGPT模型是主引擎,传统搜索引擎是辅引擎。传统搜索引擎的主要辅助功能有两个:一个是对于ChatGPT产生的知识类问题的回答,进行结果可信性验证与展示,就是说在ChatGPT给出答案的同时,从搜索引擎里找到相关内容片段及url链接,同时把这些内容展示给用户,使得用户可以从额外提供的内容里验证答案是否真实可信,这样就可以解决ChatGPT产生的回答可信与否的问题,避免用户对于产生结果无所适从的局面。当然,只有知识类问题才有必要寻找可信信息进行验证,很多其他自由生成类型的问题,比如让ChatGPT写一个满足某个主题的小作文这种完全自由发挥的内容,则无此必要。所以这里还有一个什么情况下会调用传统搜索引擎的问题,具体技术细节完全可仿照sparrow的做法,里面有详细的技术方案。传统搜索引擎的第二个辅助功能是及时补充新知识。既然我们不可能随时把新知识快速引入LLM,那么可以把它存到搜索引擎的索引里,ChatGPT如果发现具备时效性的问题,它自己又回答不了,则可以转向搜索引擎抽取对应的答案,或者根据返回相关片段再加上用户输入问题通过ChatGPT产生答案。关于这方面的具体技术手段,可以参考LaMDA,其中有关于新知识处理的具体方法。

除了上面的几种技术手段,我觉得相对ChatGPT只有一个综合的Reward Model,sparrow里把答案helpful相关的标准(比如是否富含信息量、是否合乎逻辑等)采用一个RM,其它类型toxic/harmful相关标准(比如是否有bias、是否有害信息等)另外单独采用一个RM,各司其职,这种模式要更清晰合理一些。因为单一类型的标准,更便于标注人员进行判断,而如果一个Reward Model融合多种判断标准,相互打架在所难免,判断起来就很复杂效率也低,所以感觉可以引入到ChatGPT里来,得到进一步的模型改进。

通过吸取各种现有技术所长,我相信大致可以解决ChatGPT目前所面临的问题,技术都是现成的,从产生内容效果质量上取代现有搜索引擎问题不大。当然,至于模型训练成本和推理成本问题,可能短时期内无法获得快速大幅降低,这可能是决定LLM是否能够取代现有搜索引擎的关键技术瓶颈。从形式上来看,未来的搜索引擎大概率是以用户智能助手APP的形式存在的,但是,从短期可行性上来说,在走到最终形态之前,过渡阶段大概率两个引擎的作用是反过来的,就是传统搜索引擎是主引擎,ChatGPT是辅引擎,形式上还是目前搜索引擎的形态,只是部分搜索内容Top 1的搜索结果是由ChatGPT产生的,大多数用户请求,可能在用户看到Top 1结果就能满足需求,对于少数满足不了的需求,用户可以采用目前搜索引擎翻页搜寻的模式。我猜搜索引擎未来大概率会以这种过渡阶段以传统搜索引擎为主,ChatGPT这种instruct-based生成模型为辅,慢慢切换到以ChatGPT生成内容为主,而这个切换节点,很可能取决于大模型训练成本的大幅下降的时间,以此作为转换节点。

 原文地址 ChatGPT会取代搜索引擎吗 - 知乎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/73811.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

湃睿PMDS-Fx传感器在电动牙刷上的应用

电动牙刷、冲牙器等产品市场的爆发性增长&#xff0c;显示全球人口正在越来越关注牙齿/口腔的健康问题。 根据资料显示&#xff0c;中国电动牙刷市场规模呈现逐年上涨的态势&#xff0c;2017年中国电动牙刷市场规模为43亿元&#xff0c;2021年中国电动牙刷市场规模上涨为125亿…

01-go基础-10-结构体 struct (定义结构体、声明结构体变量、结构体赋值、结构体做参数、结构体指针、结构体嵌套、结构体打印)

文章目录1. 定义结构体类型2. 声明结构体变量3. 赋值3.1 用结构体赋值3.2 每个成员分别赋值4. 结构体使用4.1 结构体作参数4.2 结构体指针做参数4.3 二者区别4.4 本质原因5. 结构体嵌套5.1 一个结构体作为另一个结构体的成员1&#xff09;定义2&#xff09;赋值和引用3&#xf…

RabbitMQ的学习

MQ引言 什么是MQ MQ(Message Quene)&#xff1a;翻译为消息队列&#xff0c;通过典型的生产者和消费者模型生产者不断向消息队列中生产消息&#xff0c;消费者不断的从队列中获取消息。因为消息的生产和消费都是异步的&#xff0c;而且只关心消息的发送和接收&#xff0c;没有…

【MySQL 原理篇】- 凭这个,我拿下字节面试

若是想查看原图&#xff0c;请点击这里 刘卡卡 | ProcessOn 超链接 索引 从存储结构上看&#xff0c;有哪些索引从存储结构上来划分&#xff1a;BTree索引&#xff08;B-Tree或BTree索引&#xff09;&#xff0c;Hash索引&#xff0c;full-index全文索引&#xff0c;R-Tree索…

[附源码]Python计算机毕业设计Django在线票务系统

项目运行 环境配置&#xff1a; Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术&#xff1a; django python Vue 等等组成&#xff0c;B/S模式 pychram管理等等。 环境需要 1.运行环境&#xff1a;最好是python3.7.7&#xff0c;…

JavaEE

文章目录前言JRE与JDK区别JAVASE、JAVAEE、JAVAME区别Dos常用命令为什么需要Path环境变量配置前言 &#x1f4cb;前言&#x1f4cb; &#x1f49d;博客&#xff1a;【无聊大侠hello word】&#x1f49d; ✍有一点思考&#xff0c;有一点想法&#xff0c;有一点理性&#xff01;…

关于有限元应力结果精度的几点讨论

1引言 作为一名汽车结构CAE工程师&#xff0c;使用有限元法进行应力分析是我多年的日常工作。但是关于有限元应力结果的一些技术点一直未能吃透&#xff0c;查到的相关文献也不多&#xff0c;文献内容也存在很多不尽不实之处。最近一段时间&#xff0c;抽空重新读了一遍王勖成…

泊松分布一

文章目录1. 泊松分布定义2.泊松分布具体实例实例1&#xff1a;实例2&#xff1a;3.生成泊松分布的代码泊松分布适合于描述单位间隔(时间、距离、面积、体积)内随机事件发生的次数的概率分布。如电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的…

【Android】用无障碍服务整个脚本——我看刑

本文灵感来源&#xff1a;李跳跳真实好友 app 目录无障碍服务(AccessibilityService)模拟点击组件ID & 组件文本坐标后台保活效果图存在缺陷缺陷一缺陷二缺陷三缺陷四无障碍服务(AccessibilityService) 无障碍服务(AccessibilityService)&#xff0c;是Google推出为了帮助…

从零搭建Sentry

前言 Sentry 为一套开源的应用监控和错误追踪的解决方案。这套解决方案由对应各种语言的 SDK 和一套庞大的数据后台服务组成。应用需要通过与之绑定的 token 接入 Sentry SDK 完成数据上报的配置。通过 Sentry SDK 的配置&#xff0c;还可以上报错误关联的版本信息、发布环境。…

四信机房环境监测方案上线 实现集中监控,统一管理

随着“东数西算”工程和新基建的加速落地&#xff0c;数智化技术正逐渐渗透到各领域。以机房行业为例&#xff0c;由于数据中心建设规模的逐步壮大&#xff0c;机房设备市场需求同步增长&#xff0c;为行业用户带来更多可能性。 伴随着机房中设备数量不断增多&#xff0c;如何…

Vue2实现浏览器ctrl+f功能

Vue2实现浏览器ctrlf功能 安装插件 使用一个Vue2的插件search-bar-vue2 npm install search-bar-vue2全局注册 //全局注册 import SearchBar from search-bar-vue2 Vue.use(SearchBar)局部注册 <template><div><search-bar :root"#app" :highlig…

【VUE】实现分页组件

&#x1f4d8;前言 &#x1f6a9;&#x1f6a9;&#x1f6a9; &#x1f48e;个人主页: 阿选不出来 &#x1f4a8;&#x1f4a8;&#x1f4a8; &#x1f48e;个人简介: 一名大二在校生,学习方向前端,不定时更新自己学习道路上的一些笔记. &#x1f4a8;&#x1f4a8;&#x1f4a…

Navigation--导航机理

1.ROS navigation为移动机器人导航相关包的集合&#xff0c;实现定位规划避障等相关功能。 整体工作流程为&#xff1a; 1.加载地图 navigation通过map_server加载现有地图。navigation无建图相关包&#xff0c;需另外实现后保存&#xff0c;默认只支持2维地图&#xff0c;其…

[附源码]Python计算机毕业设计Django游戏商城平台论文

项目运行 环境配置&#xff1a; Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术&#xff1a; django python Vue 等等组成&#xff0c;B/S模式 pychram管理等等。 环境需要 1.运行环境&#xff1a;最好是python3.7.7&#xff0c;我…

推荐测试用例管理工具,看这篇就行。

我们在考虑测试用例管理的时候&#xff0c;其实不能单纯考虑测试用管理&#xff0c;因为你的测试用例是需要和需求关联起来的&#xff0c;是需要和 bug 关联起来的。在有些行业&#xff0c;比如汽车、医药&#xff0c;不仅要对需求进行测试&#xff0c;还需要对架构设计、详细设…

某CCF C会议对国内和国外作者实行两套标准, 引27%+中稿者发声!

点击文末公众号卡片&#xff0c;不错过计算机会议投稿信息 本文主要反映轻松参会交流群内UIC22(CCF C类) 的81位国内中稿作者的诉求&#xff08;占UIC22中稿数的27%&#xff09;。目前群内作者们的诉求为&#xff0c;希望国内作者可选择线上参会。因为线下参会有困难&#xff0…

2023年湖北监理工程师报考时间是什么时候?

2023年湖北监理工程师报考时间是什么时候&#xff1f; 监理工程师考试时间虽说是全国统一的&#xff0c;但是监理工程师报名时间不统一&#xff0c;每个省份自行安排报名时间&#xff0c;监理工程师报名时间基本都是在2.3月份开始报名&#xff0c;具体关注每个省人事考试院网站…

文件包含漏洞(原理及介绍)

文件包含漏洞&#xff08;原理及介绍&#xff09; File inclusion&#xff0c;文件包含&#xff08;漏洞&#xff09;。程序开发人员通常出于灵活性的考虑&#xff0c;会将被包含的文件设置成变量&#xff0c;然后动态调用这些文件。但正是因为调用的灵活性导致用户可能调用一…

flex布局子项属性

flex布局子项属性 1、flex属性 源代码 flex属性定义子项目分配剩余空间&#xff0c;用flex来表示占多少份数 flex: number; 填数值&#xff0c;分配剩余空间的占比 2、align-self控制子项自己在侧轴上的排列方式 源代码 align-self属性允许单个项目有…