17.OpenCV中的GFTTDetector类

news2024/11/15 17:54:52

文章目录

    • GFTTDetector功能
    • OpenCV中GFTTDetector类
      • reference


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


这是使用imgproc.hpp中的goodFeaturesToTrack函数封装的类,其使用和goodFeaturesToTrack函数基本相似。

GFTTDetector功能

GFTTDetector类用来提取对线的角点特征,角点检测(Corner Detection)也称为特征点检测,是图像处理和计算机视觉中用来获取图像局部特征点的一类方法,广泛应用于运动检测、图像匹配、视频跟踪、三维建模以及目标识别等领域中。

最常用的角点检测算法有梯度直方图HOG,Haar特征和Haris角点检测,上面这三种在之前都介绍过,

1.Haar特征
2.梯度直方图HOG
3.HS角点检测

这些方法都是使用了图像中的局部信息提取了局部特征。

如同在HS角点检测中介绍的,图像灰度的变化可以分成3种情况:

  • 在两个方向上灰度变化剧烈,角点
  • 在单个方向上灰度变化剧烈,边
  • 在两个方向上灰度变化都不大,平坦区域

如下图:

对于给定图像 I ( x , y ) I(x, y) I(x,y)上一个宽高为 w × h w \times h w×hpatch窗口,计算该窗口平移一段微小距离时各个像素值差的平方和为:

E ( μ , v ) = ∑ x w ∑ y h ω ( x , y ) [ I ( x + μ , y + v ) − I ( x , y ) ] 2 E(\mu,v)=\sum_x^w\sum_y^h\omega(x,y)[I(x+\mu, y+v)-I(x,y)]^2 E(μ,v)=xwyhω(x,y)[I(x+μ,y+v)I(x,y)]2

omega(x,y)是窗口函数,可以使用窗口中的像素均值或者使用高斯函数。

根据泰勒公式展开上式:

I ( x + μ , y + v ) ≈ I ( x , y ) + I x ( x , y ) μ + I y ( x , y ) v I(x+\mu, y+v)\approx I(x,y)+I_x(x,y)\mu+I_y(x,y)v I(x+μ,y+v)I(x,y)+Ix(x,y)μ+Iy(x,y)v

故,

E ( μ , v ) ≈ [ u , v ] M ( x , y ) [ μ v ] E(\mu,v)\approx[u,v]M(x, y)\begin{bmatrix} \mu\\ v \end{bmatrix} E(μ,v)[u,v]M(x,y)[μv]

其中,

M ( x , y ) = [ I x 2 I x I y I x I y I y 2 ] = [ A C C B ] M(x, y)=\begin{bmatrix} I_x^2 & I_xI_y\\ I_xI_y &I_y^2 \end{bmatrix} = \begin{bmatrix} A & C\\ C & B \end{bmatrix} M(x,y)=[Ix2IxIyIxIyIy2]=[ACCB]

M ( x , y ) M(x, y) M(x,y)的定义可以看到,对于角点有左右边沿或上下边沿组成, I x I_x Ix I y I_y Iy总有一个近似于0,因此对于角点有,

M ( x , y ) = [ I x 2 0 0 I y 2 ] M(x, y)=\begin{bmatrix} I_x^2 & 0\\ 0 &I_y^2 \end{bmatrix} M(x,y)=[Ix200Iy2]

这里考虑的是左右上下边沿与图像高宽平行组成的角点,对于旋转和缩放的角点需要单独讨论。

在判断是否为角点时,为了减少运算量,通常并不会计算M的特征值,而使用M的行列式和迹来计算:

R = d e t ( M ) − α ( t r a c e ( M ) ) 2 R = det(M) - \alpha(trace(M))^2 R=det(M)α(trace(M))2

α \alpha α是一个经验常数,用来控制检测到角点的数量, α \alpha α值越小检测到的角点越多,相应的质量也会下降。

  • I x I_x Ix I y I_y Iy都很大时, R R R取较大正值,说明是角点
  • I x I_x Ix I y I_y Iy一大一小时, R R R取较大负值,说明是边
  • I x I_x Ix I y I_y Iy都很小时, R R R绝对值较小,说明是平坦区域

GFTTDetector中使用的是Shi-Tomasi 角点检测器,其直接使用 R = m i n ( I x , I y ) R=min(I_x, I_y) R=min(Ix,Iy)作为角点的度量,减少了超参数和运算量。

OpenCV中GFTTDetector类

调用GFTTDetector类中的静态函数create可以创建cv::Ptr<GFTTDetector>

create函数参数为:


static Ptr<GFTTDetector> cv::GFTTDetector::create	(	
    int 	maxCorners = 1000,
    double 	qualityLevel = 0.01,
    double 	minDistance = 1,
    int 	blockSize = 3,
    bool 	useHarrisDetector = false,
    double 	k = 0.04 
)		
  • maxCorners控制最多检测到的角点数量
  • qualityLevel控制角的质量水平,例如最好的是1500, qualityLevel0.01,则quality measure小于1500*0.01的将被舍弃
  • minDistance角点之间的最小距离
  • blockSize计算梯度相关矩阵时使用的邻域大小
  • useHarrisDetector是否使用Harris角点检测
  • k,Harris角点检测的超参数

代码示例:

#include <memory>
#include <vector>
#include <opencv2/opencv.hpp>
#include <opencv2/features2d.hpp>

class TestGFTTDetector
{
    public:
        typedef std::shared_ptr<TestGFTTDetector> Ptr;
        TestGFTTDetector();
        ~TestGFTTDetector() = default;
        void compute(cv::Mat &image);

    private:
        cv::Ptr<cv::GFTTDetector> gftt_ptr_;
        std::vector<cv::KeyPoint> keypoints_;
};

TestGFTTDetector::TestGFTTDetector()
{
    gftt_ptr_ = cv::GFTTDetector::create(1000, 0.1, 10);
}


void TestGFTTDetector::compute(cv::Mat &image)
{   
    cv::Mat mask(image.size(), CV_8UC1, 255);
    gftt_ptr_->detect(image, keypoints_, mask);
    for(auto &kp : keypoints_) {
        cv::circle(image, kp.pt, 3, cv::Scalar(255, 0, 0));
    }
    std::cout << "keypoints_.size: " << keypoints_.size() << std::endl;
    cv::imshow("gftt_detector_result", image);
    cv::waitKey(0);

    cv::goodFeaturesToTrack()
}

int main(int argc, char **argv)
{
    TestGFTTDetector::Ptr gftt = std::make_shared<TestGFTTDetector>();
    cv::Mat image = cv::imread(argv[1]);
    gftt->compute(image);
    return 0;
}

检测结果如下:

可以看到检测的结果还是很好的,不过中间大六边形上面的两个角点还是没有检测到,感兴趣可以改小 k k k的值试一下。

使用的图片在OpenCV代码仓库中opencv-4.5.5/samples/data/blox.jpg


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


reference

  • 1.https://senitco.github.io/2017/06/18/image-feature-harris/
  • 2.https://docs.opencv.org/4.5.5/df/d21/classcv_1_1GFTTDetector.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/731083.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

wps如何加载mathtype和Endnote

为了支持国产化软件&#xff0c;弃用office套装&#xff0c;现在改用wps办公软件&#xff0c;但是写作科技论文的时候还是会出现很多的不方便&#xff0c;比如文献引用、公式排版编号等等。尽管wps自带了公式编辑器&#xff0c;然鹅这可太不方便了&#xff0c;因此把几个技巧总…

由于找不到libmmd.dll,无法继续执行代码有什么好的解决办法修复?

其实要解决由于找不到libmmd.dll,无法继续执行代码这个问题还是比较简单的&#xff0c;因为这类问题不外乎就是丢失了dll文件&#xff0c;我们只要下载安装回来就可以了&#xff0c;但有朋友还是会好奇&#xff0c;libmmd.dll到底是什么文件&#xff0c;那我们就来详细说说吧&a…

paddlenlp安装教程

一、安装cuda和cuDNN 1、安装paddlepaddle之前&#xff0c;要确保电脑已经安装了对应版本的cuda和cuDNN &#xff08;1&#xff09;安装CUDA 进入官网选择合适版本下载&#xff1a; 按照步骤安装完成即可。安装完成后进行验证&#xff0c;打开cmd命令窗口&#xff0c;输入nv…

Floyd算法学习笔记

Floyd算法学习笔记 前言 同步于 c n b l o g s cnblogs cnblogs 发布 如有错误&#xff0c;欢迎各位 dalao 批评指出。 前置芝士: 1.邻接矩阵&#xff08;Floyd要用邻接矩阵存图&#xff09; 2.动态规划思想&#xff08;最好学过&#xff0c;没学过也没有太大影响&#…

无线视频传输方案|远距离无人机图传应用,+28dBm大功率wifi图传模块

针对无人机远程图片、视频传输需求&#xff0c;市面上就有无线模块研发厂家推出了基于大功率图传WiFi模块SKW77的无人机远程视频传输解决方案。在无人机和地面的中继器内加入串口WiFi模块&#xff0c;手机通过与无人机和地面的中继器内置的串口WiFi模块给无人机传递控制信号&am…

深度理解 JAVA 动态代理

本文篇幅比较长&#xff0c;在确定您是否需要仔细阅读本文前&#xff0c;可以先思考一下下面几个问题&#xff1a; 动态代理是什么&#xff1f;如何实现动态代理&#xff1f;所有类都能实现动态代理吗&#xff1f;非目标方法是否会被代理&#xff1f;为什么 JDK 实现动态代理必…

平安养老险广东分公司积极开展“7·8全国保险公众宣传日”系列活动

2023年是全面贯彻落实党的二十大精神的开局之年&#xff0c;是实施“十四五”规划承上启下的关键之年。在国家金融监督管理总局指导、中国保险行业协会组织下&#xff0c;平安养老保险股份有限公司广东分公司&#xff08;以下简称“平安养老险广东分公司”&#xff09;以“78全…

ETHERNET/IP转MODBUS-RTU协议网关

远创智控YC-EIP-RTU是自主研发的一款ETHERNET/IP从站功能的通讯网关。该产品主要功能是将各种MODBUS-RTU设备接入到ETHERNET/IP网络中。 远创智控YC-EIP-RTU连接到ETHERNET/IP总线中做为从站使用&#xff0c;连接到MODBUS-RTU总线中做为主站或从站使用。 2.ETHERNET/IP转MODBU…

IDEA中配置Java反编译工具javap -c

IDEA中配置Java反编译工具javap -c 一、前置条件二、新建外部工具三、使用方式 欢迎访问我的个人博客&#xff1a;https://wk-blog.vip 一、前置条件 确保 IDEA 已经开启了编译 javac 。默认 IDEA 是开启的。 二、新建外部工具 首先进入 Settings ---> Tools ---> Ext…

自动化测试报告样式HTMLTestRunner、BeautifulReport、HTMLReport、Allure你喜欢哪个?

自动化测试报告样式HTMLTestRunner、BeautifulReport、HTMLReport、Allure你喜欢哪个&#xff1f; 1 框架设计(准备工作)1.1 简易框架图1.2 common/reportOut.py1.3 report1.4 testcase/test_baidu.py1.5 mian.py 2 HTMLTestRunner2.1 下载使用2.2 reportOut.py设计2.3 报告样式…

十一、框架与大数据模型

frameset标签 1、frameset标签 这种结构&#xff0c;基本上被淘汰 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> <frameset cols"25%,75%">&…

统计每列中不同值出现的次数.apply(pd.value_counts)

在Python 的pandas.DataFrame中有一种操作&#xff0c;它可以大大减轻我们的工作量&#xff0c;方便我们更快地进行数据分析&#xff0c;加快处理工作的效率。这就是 .apply(pd.value_counts) pandas 的强大&#xff0c;越使用&#xff0c;也就越爱了。现在就来夸夸它的作用啦…

统计学习导论(ISLR) 第八章树模型课后习题

统计学习导论(ISLR) 第八章树模型课后习题 🌸个人主页:JOJO数据科学📝个人介绍:统计学top3高校统计学硕士在读💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏✨本文收录于【R语言数据科学】本系列主要介绍R语言在数据科学领域的应用包括: R语言…

二叉树 — 返回最大的二叉搜索子树大小

题目&#xff1a; 给定一棵二叉树的head节点&#xff0c;返回这颗二叉树中最大的二叉搜索子树的大小。 一颗二叉树来讲&#xff0c;可能整棵树不是搜索二叉树&#xff0c;但子树是一颗搜索二叉树。如下图所示&#xff0c;这时要返回这颗子搜索二叉树的最大节点个数。下图中&…

【node报错】cannot be loaded because running scripts is disabled on this system.

了解意思&#xff1a; cannot be loaded because running scripts is disabled on this system. 因为在该系统上禁用了运行脚本&#xff1b; 这个错误是由于你的系统执行策略&#xff08;Execution Policies&#xff09;禁止运行脚本导致的。Windows 系统默认情况下禁止运行…

ChatGPT前身GPT的论文-译文

写在前面 论文 Improving Language Understanding by Generative Pre-Training 地址 https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf ChatGPT火了&#xff0c;改论文作为ChatGPT的前身&#xff0c;可以从这里看到ChatGPT的原始影子。 摘要 自然语言…

制造业怎么应用大数据?_光点科技

随着信息技术的迅猛发展&#xff0c;大数据正逐渐成为各行各业的重要资源和工具。在制造业中&#xff0c;大数据的应用也逐渐得到了广泛关注。 制造业如何应用大数据&#xff1f; 首先&#xff0c;数据采集是制造业应用大数据的重要一环。制造业的生产过程中涉及到大量的数据&a…

二叉树OJ题:LeetCode--101.对称二叉树

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下LeetCode中第144道二叉树OJ题&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; 数据结构与算法专栏&#xff1a;数据结构与算法 个 人…

49天精通Java,第0天,编程语言类型有哪些?我心中的TOP1编程语言,什么是java跨平台性?

目录 一、常见的编程语言类型1、机器语言2、汇编语言3、高级语言 二、计算机编程语言三、跨平台性1、跨平台的优势包括&#xff1a;2、实现跨平台的方式包括&#xff1a; 四、Java的跨平台性五、java运行时和虚拟机六、Java内存管理和Java垃圾回收1、Java内存管理2、Java垃圾回…

基于matlab使用虚幻引擎模拟开发视觉SLAM算法(附源码)

一、前言 本示例展示了如何使用从虚幻引擎模拟环境中获取的图像数据开发可视化同步定位和映射&#xff08;SLAM&#xff09;算法。 视觉SLAM是计算摄像机相对于周围环境的位置和方向&#xff0c;同时映射环境的过程。开发可视化 SLAM 算法并评估其在不同条件下的性能是一项具…