day7_redis学习

news2025/1/11 2:13:42

文章目录

  • Geo查找附近商铺
  • BitMap实现用户签到
  • UV统计

Geo查找附近商铺

Geo是GeoLocation的简称,代表地理坐标,在Redis 3.2中加入了对Geo的支持,允许存储地理坐标信息,常见的命令有:
①GEOADD key x y member [x2 y2 member]:向key中添加多个地理坐标,其中x,y是它的经纬度,member是key中的一个点
②GEODIST key member1 member2 : 获取key中的两个member之间的距离
③GEOHASH key member: 将key的member的坐标以hash字符串的形式返回
④GEOPOS key member: 获取key中的member的坐标
GEOSEARCH key [FROMMEMBER member] [FROMLONLAT longitude latitude] [BYRADIUS radius m|km|ft|mi] [BYBOX width height m|km|ft|mi] [ASC|DESC] [COUNT count [ANY]] [WITHCOORD] [WITHDIST] [WITHHASH]:查找key中距离某一个位置在radis或者width范围内的member,其中查找区域可以是一个圆形或则矩形如果是圆形,那么是通过BYRADIUS radius m|km|ft|mi来说明,其中的m|km等说明的是查找范围的半径的单位,同理如果是BYBOX width height m|km|ft|mi则说明查找范围是一个矩形。WITHDIST则返回的数据中不仅仅返回的是key中在这个范围的member,同时返回这个member到参考点的距离。其中参考点可以选择key中的member,命令是FROMMEMBER member,如果希望自定义的参考点,那么就是FROMLONLAT x y
值得注意的是,返回的点是默认根据distance升序返回的,也即根据ASC|DESC来指明返回结果是按照distance升序还是降序返回
⑥GEOSEARCHSTORE: 作用和GEOSEARCH的是一样的,但是它可以将结果保存到指定的key中。
对应的命令运行结果如下所示:
在这里插入图片描述
所以我们可以利用命令GEOADD,来将店铺信息以及对应的地理信息添加到redis中,但是考虑到店铺的信息很多,此时如果店铺信息全部存入到redis中的时候就会导致内存占用的问题,因此只需要将店铺的id存入到redis中
此外,如果希望查询某一个类别的店铺的时候,我们希望能够很快找到属于这一个类别的店铺,所以就需要根据redis中的key的层次结构来实现,因此对应的key就是geo:shop:typeId,key的值就是属于这个typeId的shopId.
因此如果希望查找某一个typeId的店铺的时候,就先从redis中获取所有的shopId,然后再根据得到的shopId来查找数据库从而得到Shop,最后返回给前端即可
所以在利用Geo来查找附近的商铺的时候,我们需要先将shopId加入到redis中,对应的代码为:

/**
 * 将所有商铺的地理位置信息添加到redis中,其中因为
 * 商铺的信息很多,所以最后保存到redis中的是这个商铺的id以及地理位置,
 * 当我们查询某一个类别的商铺的时候,就会从redis中获取对应的商铺id,然后
 * 再查询数据库。
 */
@Test
public void loadShopService(){
    //1、获取所有的商铺
    List<Shop> shops = shopService.list();
    //2、根据商铺的类别id,从而进行分组
    Map<Long, List<Shop>> shopMaps = shops.stream().collect(Collectors.groupingBy(Shop::getTypeId));
    //3、遍历不同分组的店铺,然后写入到redis中
    for(Map.Entry<Long, List<Shop>> entry : shopMaps.entrySet()){
        //3.1 获取店铺类别id
        Long typeId = entry.getKey();
        String key = RedisConstants.SHOP_GEO_KEY + typeId;
        //3.2 获取属于这个类别的所有店铺id
        List<Shop> value = entry.getValue();
        //3.3 将所有的店铺写入到redis中,通过命令GEOADD key x y member,其中
        //x,y就是店铺的位置,而member就是这个店铺的id
        /*
        这种方式需要遍历不同类别的店铺,并且是一条一条添加的,效率可能会有些低,
        所以采用的是批量插入到redis的方式
        value.forEach(shop -> {
            stringRedisTemplate.opsForGeo().add(key, new Point(shop.getX(), shop.getY()), shop.getId().toString());
        });*/
        List<RedisGeoCommands.GeoLocation<String>> iteration = new ArrayList<>(value.size());
        value.forEach(shop -> {
            iteration.add(new RedisGeoCommands.GeoLocation<>(shop.getId().toString(), new Point(shop.getX(), shop.getY())));
        });
        stringRedisTemplate.opsForGeo().add(key, iteration);
    }
}

将shopId保存到redis中之后,我们就可以去实现查找附近的店铺了,对应的api接口为ShopController中的queryByType,对应的url为shop/of/type,他会传递4个参数,分别是typeId, current(表示查询的是第current页的数据),x , y(表示x,y这个点作为参考点),其中x,y这2个参数并不是必须的,所以如果没有传递x,y这2个参数的时候,默认是查找第current页的所有店铺,否则就是查找x,y某个范围内的第current页的所有店铺

所以对应的代码为:

@Override
public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
    if(x == null || y == null){
        //1、x,y至少有1个为null,那么就是查询所有类型为typeId的第current的店铺
        Page<Shop> page = query()
                .eq("typeId", typeId)
                .page(new Page<Shop>(current, SystemConstants.DEFAULT_PAGE_SIZE));
        //1.1 获取第current页的所有记录
        List<Shop> records = page.getRecords();
        return Result.ok(records);
    }
    int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
    int end = current * SystemConstants.DEFAULT_PAGE_SIZE;
    //2、查询x,y附近的所有店铺GEOSEARCH key FROMLONLAT x y BYRADIUS radius  withdist,并且默认根据distance升序返回的
    String key = RedisConstants.SHOP_GEO_KEY + typeId;
    GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo().search(key,
            //以x,y这个点为圆心,半径为5千米的店铺
            GeoReference.fromCoordinate(x, y),
            new Distance(5000),
            //includeDistance表示返回的数据除了携带member信息之外,还包括距离圆心的距离
            //limit用来实现分页的,表示获取在这个范围内的点最多有end条(所以不仅仅包括了第current页的,也包括了之前的页的记录,因此下面需要调用skip方法,来获取第current页的记录
            RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end)
    );
    if(results == null){
        //2.1 如果距离圆心距离为5km的店铺一个都没有
        return Result.ok(Collections.emptyList());
    }
    List<GeoResult<RedisGeoCommands.GeoLocation<String>>> contents = results.getContent();
    if(contents.size() <= from){
        //2.2 如果查询到的距离圆心的距离的店铺比current - 1页还要少,那么第current页的记录就是空的
        return Result.ok(Collections.emptyList());
    }
    //2.3 获取第current页的店铺以及每个店铺距离当前圆心的距离
    List<Long> shopIds = new ArrayList<>();
    Map<Long, Distance> map = new HashMap<>();
    contents.stream().skip(from).forEach(result ->{
        //对于每个GeoLocation来说,存在2个属性name以及Point,point表示的是位置
        Long shopId = Long.parseLong(result.getContent().getName());
        shopIds.add(shopId);
        map.put(shopId, result.getDistance());
    });
    //3、获取shopIds中的所有Shop对象,然后将其返回,但是如果没有last方法中的order by子句
    //很容易导致最后shops的结果和上面的shopIds顺序不一样,因为在mysql中根据in子句    
    //查询,因此为了保证两者的顺序一样,才添加了last方法中的order by子句
    String idStr = StrUtil.join(",", shopIds);
    List<Shop> shops = query().in("id", shopIds)
            .last("ORDER BY FIELD (id," + idStr + ")").list();
    //3.1 获取每个shop到当前x,y点的距离
    shops.forEach(shop -> {
        shop.setDistance(map.get(shop.getId()).getValue());
    });
    return Result.ok(shops);
}

所以实现上面的API接口之后,那么最后的运行结果如下所示:
在这里插入图片描述

BitMap实现用户签到

在Redis中,通常利用BitMap这种数据结构来实现用户的签到,因为BitMap是一个二值统计状态的,所以通常用于判断用户是否登录,签到场景,常见的命令有:
①SETBIT key offset value : 设置key中的下标为offset的值为value
②GETBIT key offset: 获取key中的下标为offset的值
③BITFIELD key GET type offset: 这个命令表示获取key中从offset开始的,count为比特数字形成的数字,type说明形成数字对应的形式以及count,例如u2表示返回的是从offset开始的,共2个比特数字形成的无符号十进制数字,i2则表示的是从offset开始的,共2个比特数字形成的有符号十进制数字。但是BITFIELD并不仅仅可以执行获取操作,也可以执行修改、自增操作,只是通常用于获取操作。
④BITPOS key value: 获取第一次出现1或者0的下标
⑤BITCOUNT key: 统计key中一共有多少个1

所以我们要希望实现用户签到功能,那么就可以通过命令SETBIT,在Java客户端中,并没有opsForBit方法,那么应该执行操作呢?其实BitMap是基于String进行操作的,所以是通过opsForValue(),然后调用对应的方法执行的
同时,要想实现用户签到,那么key的格式应该是userId:年月,因为这样可以清楚知道不同的用户在某一个时间的签到情况,而要设置第day天签到,那么就需要设置key中的下标为day - 1的值即可。所以对应的代码为:

/**
 * 实现用户签到功能,那么这时候需要利用到了bitmap数据结构
 * 通过命令setBit key offset value,来设置下标为offset的置为value
 * value只能为1、0.
 * 所以要统计某一个用户在哪一个时间签到,那么对应的key就是一个时间
 * 所以key = userId:currentDate
 * @return
 */
@Override
public Result sign() {
    //1、获取当前的登录用户
    Long userId = UserHolder.getUser().getId();
    //2、获取当前的时间
    LocalDateTime dateTime = LocalDateTime.now();
    String dateString = dateTime.format(DateTimeFormatter.ofPattern(":yyyyMM"));
    //3、设置key
    String key = RedisConstants.USER_SIGN_KEY + userId + dateString;
    //4、获取offset,来设置key中的哪一个bit位的值,这时候getDayOfMonth是从1开始的,所以还需要减1
    int day = dateTime.getDayOfMonth();
    //5、通过opsForValue调用setBit来实现签到功能
    stringRedisTemplate.opsForValue().setBit(key, day - 1, true);
    return Result.ok();
}

要想统计用于当前用户至今为止的连续签到次数,那么这时候仅仅通过GETBIT命令无法满足我们的要求,因为这个只能获取下标为offset的值,而我们需要获取范围的值,因此就需要利用BITFIELD命令了。要想获取至今为止的连续签到次数,也就是从当月的第1天到至今为止的连续签到次数,所以offset就是0,表示从当月的第1天开始,而要查day天的比特数据,因为至今为止一共有day天,所以就有day个比特数字
但是需要获取的是连续签到天数,所以我们在获取从第1天到至今为止的十进制数字之后,就需要不断和1进行与运算,从而获取至今为止的签到天数,一旦比特数字为0,说明签到,此时就可以退出循环了,否则就不断右移。如下所示:
在这里插入图片描述
所以对应的代码为:

/**
 * 获取当前用户到当前这一天为止的连续签到次数
 * 这时候需要利用到了命令bitfield,它是可以获取从offset开始的,
 * 长度为len的比特数字对应的十进制数字。
 * 所以这时候我们因为需要统计的是从第一天开始,到今天为止
 * 的连续签到次数,那么获取从0开始,长度为day的比特数字对应的十进制数字
 * 然后再和1进行与运算,从而可以得知当前这一天为止的连续签到次数
 * @return
 */
@Override
public Result signCount() {
    //1、获取当前的登录用户
    Long userId = UserHolder.getUser().getId();
    //2、 获取当前的日期
    LocalDateTime dateTime = LocalDateTime.now();
    String dateFormat = dateTime.format(DateTimeFormatter.ofPattern(":yyyyMM"));
    //3、 获取签到对应的key
    String key = RedisConstants.USER_SIGN_KEY + userId + dateFormat;
    //4、 获取当前这一天是这个月份的第几天,对应的day就是我们需要统计多少个比特为的个数
    int day = dateTime.getDayOfMonth();
    //5、获取从0开始的,长度为day的二进制数字对应的无符号十进制数字
    //bitfield key get u[day] offset
    //之所以返回的是一个集合,因为BITFIELD也可同时进行其他的操作,例如SET,INCR
    List<Long> result = stringRedisTemplate.opsForValue().bitField(key,
            BitFieldSubCommands.create().get(BitFieldSubCommands.BitFieldType.unsigned(day)).valueAt(0)
    );
    if(result == null || result.isEmpty()){
        return Result.ok(0);
    }
    //6、获取对应的无符号十进制数字
    Long num = result.get(0);
    if(num == 0L || num == null){
        return Result.ok(0);
    }
    int count = 0;
    System.out.println(Long.toBinaryString(num));
    //6.1 统计到今天为止的连续签到次数
    while(true){
        if((num & 1) == 0){
            //如果当前的比特位为0,说明没有签到,直接退出
            break;
        }else{
            ++count;
        }
        num >>>= 1;
    }
    return Result.ok(count);
}

UV统计

UV: 全称为Unique Visitor,也叫独立访客量,是指通过互联网、浏览这个网页的自然人。1天内同一个用户多次访问这个网站的时候,只记录1次
PV:全称为Page Visitor,也叫页面访问量或点击量,用户每次访问网站的一个页面,都会记录1次PV。当用户多次打开页面,就记录多次PV,所以PV往往用来衡量网站的流量。

所以如果需要通过服务器来实现UV的时候,就需要判断之前这个用户是否已经统计过了,所以在用户访问量非常巨大的时候,那么导致占用内存巨大。
所以就有了HyperLogLog这种数据结构,它是从Loglog算法派生的概率算法,用于确定非常大的基数,而不需要存储所有值
Redis中的HyperLogLog是基于String操作的,单个HLL占用的内存永远小于16kb,但是测量结果是具有概率性的,拥有小于0.81%的误差,但是在UV统计中,这个误差是完全可以忽略的。常见的命令有:
①PFADD key elemet1 [element2 element3…]:向key中添加多个element,如果这个element已经存在key中了,那么不会执行添加操作
②PFCOUNT key: 获取key中的元素个数
③PFMERGE destKey sourceKey1 [sourceKey2 sourceKey3…]:将多个sourceKey合并到destKey中

所以这里通过HyperLogLog实现UV统计的代码如下所示:

/**
 * 测试HyperLogLog:
 * HyperLogLog数据结构是基于String操作的,占用的内存很小,不超过16KB,但是
 * 他是一个具有概率性的结果,也即是说插入1000000条数据,但是最后的key中
 * 存在的元素个数可能没有1000000条,但是它的概率不超过0.81%,这对于UV统计
 * 来说,完全可以忽略的。常见的命令有:
 * 1、PFADD key element1 element2 -> 对应java客户端的方法是opsForHyperLogLog().add(key, element...)
 * 2、PFCOUNT key: 统计key中的元素个数, -> opsForHyperLogLog().size()
 * 3、PMERGE destKey sourceKey1 sourceKey2 : 将多个sourceKey合并到destKey中
 * 其中PFADD 命令条件元素到key的时候,如果新添加的元素已经存在了,那么不会进行添加操作
 */
@Test
public void testHyperLogLog(){
    //未添加的时候,redis中的内存为1476440,添加之后是1490800
    //所以添加的数据大小为14kb,小于16kb
    String[] users = new String[1000];
    int j = 0;
    String key = "hll2";
    for(int i = 0; i < 1000000; ++i){
        j = i % 1000;
        users[j] = "user_" + i;
        if(j == 999){
            //每一千条,就将数组插入到redis中
            stringRedisTemplate.opsForHyperLogLog().add(key,users);
        }
    }
    //打印key中有多少个元素,因为HyperLogLog是一个具有概率性的结果,所以最后
    //的结果可能不一定有1000000条,但是概率小于0.81%
    Long count = stringRedisTemplate.opsForHyperLogLog().size(key);
    System.out.println(count);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/71138.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(一)SpringBoot项目初始化并引入基础文件【木字楠后台管理系统模板】

&#x1f3b6; 文章简介&#xff1a;SpringBoot项目初始化并引入基础文件【木字楠后台管理系统模板】 &#x1f4a1; 创作目的&#xff1a;为了带大家完整的体验木字楠后台管理系统模版的开发流程 ☀️ 今日天气&#xff1a;天气☁️很好。太阳晒在身上暖暖的 &#x1f4dd; 每…

IB数学怎么学,HL是什么难易程度,和SL的内容差的大吗?

做为刚大学毕业的M20 IBer&#xff0c;数学课以往一直没下过90%&#xff0c;全是7分&#xff0c;IA 校园内得分19/20。尽管final被IBO赏了个6&#xff08;大考撤销&#xff0c;ibo蒙蔽估分orz&#xff09;&#xff0c;但我还是汇总了一些自身的数学学习工作经验&#xff0c;期待…

一个变量命名神器:支持中文转变量名

变量命名的规范&#xff0c;对于我们编程&#xff0c;大家都知道是非常重要的&#xff0c;上次给大家推荐过一个命名辅助工具《程序员还在为变量取名苦恼&#xff0c;那是因为你不知道&#xff0c;这个变量命名神器》&#xff0c;但大家一致反馈存在2个问题&#xff1a; 1、网…

项目管理(如何进行项目采购管理)

项目采购管理包括从项目团队外部采购或获取所需产品、服务或成果的各个过程。项目采购管 理包括编制和管理协议所需的管理和控制过程,例如,合同、订购单、协议备忘录 (MOA),或服务 水平协议 (SLA)。被授权采购项目所需货物和(或)服务的人员可以是项目团队、管理层或组织采…

使用winhex对fat16文件系统分析

“FAT16”是“File Allocation Table,16-bit”的英文缩写,意思是“文件分配表,16位” 。FAT16文件系统是从微软的DOS 3.0系统开始使用的&#xff0c;它能够支持大于16MB小于2GB的分区&#xff0c;Windows 2000以上操作系统可以创建4GB的FAT16分区&#xff0c;但与传统的FAT16不…

【观察】深度剖析,为什么说帆软的文化决定了FineBI6.0的易用和好用

毫无疑问&#xff0c;今天国家对数字经济给予了前所未有的高度重视&#xff0c;《“十四五”数字经济发展规划》中&#xff0c;就明确将继续坚持推进数字产业化和产业数字化&#xff0c;赋能传统产业转型升级&#xff0c;为构建数字中国提供有力支撑&#xff0c;并提出到2025年…

FFmpeg之硬解码

导读 众所周知&#xff0c;软解码虽然兼容性一流&#xff0c;但是却非常依赖CPU&#xff0c;所以性能消耗笔记大&#xff1b;硬解码使用内置的DSP芯片进行解码&#xff0c;性能高&#xff0c;但是兼容性一般。 虽说硬解码兼容性不太好&#xff0c;但是在实际开发中出于对性能的…

智能化煤矿-设备管理系统、故障诊断、全生命周期管理

随着智能化煤矿的建设&#xff0c;煤矿设备、传感器数量在增加、煤矿设备的自动化、智能化程度也相对提高。保证设备稳定运行&#xff0c;减少故障时间是提高煤矿安全生产的一种重要途径。另外随着信息技术的发展&#xff0c;像云计算、物联网、大数据等相关技术的运用&#xf…

vue2的 webpack-bundle-analyzer 打包体积 看优化包

1、 先安装 npm i webpack-bundle-analyzer -D 2、 vue.config 文件中 配置 /* webpack相关配置 *该对象将会被 webpack-merge 合并入最终的 webpack 配置 */ if (process.env.use_analyzer) { // 分析 config .plugin(webpack-bundle-analyzer) .use(require(webpa…

XuperSocial首个明星DApp上线,探索区块链分布式通信基础设施

12月7日&#xff0c;星际口袋上线星际社区&#xff0c;为广大藏友提供稳定、可信的交流场所。星际社区基于百度超级链团队重磅发布的去平台化社交解决方案XuperSocial搭建&#xff0c;XuperSocial是架设在百度超级链开放网络&#xff08;XuperOS&#xff09;上的DApp&#xff0…

Oracle PrimaveraUnifier 之数据要素(Data Element)

目录 一&#xff1a;什么是数据要素 二&#xff1a;常用的数据要素 一&#xff1a;什么是数据要素 数据要素是Oracle Primavera Unifier维护业务单据/表达的最小单元&#xff0c;也就是我们常说的字段&#xff0c;它将数据定义与字段标签相结合&#xff0c;成为我们用户在 P…

Runtime源码解析-类中bits

Runtime源码解析-类中bits class_rw_t ro_or_rw_ext_t 成员变量方法 初始化方法存取方法类型判断 公有方法 获取class_rw_ext_t获取/设置class_ro_t方法、属性、协议列表 class_rw_ext_tclass_ro_t总结 1. 为什么ro_or_rw_ext 会有两种类型&#xff0c;class_rw_ext_t或者cla…

Sping Boot 如何实现自动配置

Sping Boot 如何实现自动配置 Spring Boot都需要创建一个mian启动类&#xff0c;而启动类都含有SpringBootApplication注解&#xff0c;从启动类&#xff0c;一步步探索源码。 SpringBootApplication注解 Spring Boot 启动类上都有一个 SpringBootApplication注解&#xff1…

想知道CAD怎么转换为PDF吗?快来收藏这些实用的转换技巧

有一些读建筑类或者电子信息类专业的小伙伴&#xff0c;经常需要使用到CAD软件来设计和修改图纸&#xff0c;并且保存下来的文件一般默认是CAD文件格式。但有的时候&#xff0c;我们将图纸发送给其他人&#xff0c;对方的设备中没有相应的软件&#xff0c;导致无法查看&#xf…

Linux 进程间通信:匿名管道 命名管道 共享内存

进程间通信的必要性 进程间通信&#xff0c;是建立在多进程之上的。如果是单进程&#xff0c;则无法使用并发能力&#xff0c;更加无法进行多进程协同。多进程要想实现多进程协同&#xff08;目的&#xff09;&#xff0c;就必须进行进程间通信&#xff08;手段&#xff09;。…

知识图谱-KGE-语义匹配-双线性模型-2018:SimplE

【paper】 SimplE Embedding for Link Prediction in Knowledge Graphs【简介】 本文是加拿大英属哥伦比亚大学的两位学者发表在 NIPS 2018 上的工作&#xff0c;文章提出了 SimplE&#xff08;Simple Embedding&#xff09;。这篇和前面一篇差不多&#xff0c;也是对 1927 年的…

深度学习 +SLAM:SuperGlue

简介 传统SLAM的流程通常包括如下内容&#xff0c; 特征点提取描述&#xff0c;特征点匹配 异常点去除&#xff0c; 位姿估计。 在以往前人的工作中&#xff0c;SuperPoint和 D2-Net试图解决特征点检测和描述的问题。而检测之后的匹配通常通过最近邻匹配和异常点剔除的方式完…

使用 Arduino 中断 – 硬件、引脚变化和定时器

使用 Arduino 中断 – 硬件、引脚变化和定时器 查看原文 今天我们将学习中断&#xff0c;这是Arduino和其他微控制器的一个非常重要的基本功能。虽然我们将专注于Arduino Uno&#xff0c;但这里介绍的概念与其他板同样有效。 介绍 当我们设计一个项目时&#xff0c;我们通常…

Release notes for VPP 22.10

本次发布新增了212个提交&#xff0c;包括118个修复。关于本次发布的更多信息&#xff0c;请访问&#xff1a;https://gerrit.fd.io/r/gitweb?pvpp.git;ablob;fdocs/aboutvpp/releasenotes/v22.10.rst;h5dfbff5d48e957e83d7e3c2f978820c95c41a2e4;hb07e0c05e698cf5ffd1e2d2de0…

「图文教程」iOS 16测试版如何升级iOS 16正式版?

苹果iOS 16正式版已经更新到iOS 16.1.2了&#xff0c;如果你的iPhone之前为了尝鲜已经下载安装iOS 16测试版&#xff0c;该如何升级iOS 16正式版呢&#xff1f;一起来了解下吧&#xff01; 方法一、移除iOS 16 Beta描述文件 1、进入【设置】-【通用】-【VPN与设备管理】&…