在这里提出一种算法,其实是将两篇papers的想法的结合。没有什么创新点,只是做一下算法原理的记录,防止后面重新看代码的时候一头雾水。
算法的目的在于查找特定半径范围的圆,而不致力于查找所有的圆,当然它也支持查找所有的圆,只是精度没有在设定圆半径内搜索时精度来的高。
算法具体的步骤是这样子的:
1、二值化图像,并通过Canny算子找边缘,再只保留外边缘。
2、行程行遍历整张图片,并用一个列表将圆弧像素点串起来,这里的原理类似于基于行程的连通域遍历,可以参考之前的文章基于行程标记的快速连通域提取。
3、固定间隔提取串起来的圆弧上的5个点,并计算5个点的弧度变化绝对值的和,筛选剔除直线段。
4、计算留存下来的圆弧段,提取首尾和中间三个点,大概计算其圆心。
5、在圆形,从0到360度一圈,向外辐射遍历一定范围内的边缘点。
6、基于高斯分布,提取所有距离固定半径较近的所有点,并计算这些点的离散分布中心,和所有点距离中心的平均距离,从而得出圆的中心和半径。
接下来,仔细的介绍每一步。从第二步讲起:
行遍历整张图像
我们采用如下的结构表示行中,相连的边缘像素:
struct arc_node
{
int row;//相连边缘像素所在的行
int start;//相连像素的起始列
int end;//相连像素的终止列
float arc;//当前边缘相对上一行边缘的弧度变化
shared_ptr<arc_node> next;//指向下一行相连的边缘
shared_ptr<arc_node> prev;//指向上一行相连的边缘
};
接着用如下结构来表示串接起来的所有边缘像素
struct arc_tree
{
shared_ptr<arc_node> header;//串联的边缘像素点的头
shared_ptr<arc_node> tail;//串联的边缘像素的尾
int size;
};
在遍历的时候,注意两点:1、在同一行中,如果有两个边缘与上一行相接,则除了第一个之外,其余重新创建一个arc_tree(如图中的红色和蓝色边缘)。2、同一个tree里面的边缘点,如果arc变化绝对值超过一定的数值,则创建新的arc_tree(建议45度)。
剔除直线边缘tree
首先需要剔除tree的长度小于15的。接着,将tree从头到尾取5个点,并计算相邻3个点的arc的差值的绝对值之和,然后求均值,若在5度和45度之间,则表示可能为圆弧,否则予以剔除。
计算筛选过后的tree的圆心和半径
取tree中的首尾和中间三个点,计算圆心,具体如下图所示:
图中橙色的点就是圆心,得到圆心之后,就可以计算半径。
计算最小似然圆
从上一步计算得到的圆心,从0到360度,逐步遍历所有的边缘点,如下图所示。
并通过如下所式计算每个像素点的比率:
如果比率值>0.6,则将这些点记录下来,最后如果点数如果在360度中,有270度的点在这个范围内,且所有比率值的均值超过一定值,表示为圆。这是就可以通过这些点计算其似然圆心和半径。