基于机器学习的天河机场物流预测研究
全球经济快速增长的形势下,八大区域性枢纽之一的武汉天河机场的物流需求也在攀升。文章针对天河机场的货邮吞吐量,运用机器学习中的线性回归模型通过Python对其进行需求预测,并用二次指数平滑法与之对比,在平均绝对百分误差比较下得出机器学习对预测具有更好精准度
出处《物流科技》 机构:武汉科技大学恒大管理学院
基于优化极限学习机模型的京津冀地区气象干旱预报研究
基于京津冀地区气象干旱较严重的现状,为找出适用于京津冀地区干旱预报的标准模型,以相对湿润指数(MI)和极限学习机模型(ELM)为基础,基于麻雀搜索算法(SSA)、粒子群算法(PSO)、遗传算法(GA)3种优化算法,构建了SSA-ELM、PSO-ELM、GA-ELM共3种优化模型,并将计算结果与ELM模型、广义回归神经网络模型(GRNN)和BP神经网络模型作比较,结果表明:京津冀地区的气象干旱普遍较严重,尤其在春季和冬季,全区基本均以特旱为主;SSA-ELM模型在干旱预报中表现出了较高的精度,该模型的误差指标最低,同时一致性指标最高,且综合性绩效指数(GPI)为1.36,在所有模型中精度排名第1,因此,SSA-ELM模型可作为京津冀地区干旱预报的推荐模型使用
机构:河北水利电力学院水利工程系 作者:王小亚 贾悦 出处:《中国防汛抗旱》
基于不同机器学习算法的汾渭平原PM2.5质量浓度预报与分析
基于支持向量回归(SVR)、BP神经网络(BPNN)、随机森林(RF)、梯度提升决策树(GBDT)和极端梯度提升(XGBoost)等5种机器学习算法,利用2016-2021年逐小时PM2.5质量浓度监测数据和气象观测数据,构建汾渭平原代表城市PM2.5质量浓度预报模型,对比检验不同预报模型在不同时段的预报效果。结果表明:(1)5种机器学习算法模型总体表现为秋冬季和供暖期的预报效果要优于春夏季,各模型在细颗粒物污染较重时段的预报能力更加稳定,预报效果更好。(2)XGBoost模型无论在决定系数、平均绝对误差、均方根误差上均不同程度地优于其他模型,其次是GBDT、RF和BPNN模型,SVR模型预报能力较差。(3)XGBoost模型预报结果在量级和演变趋势上与实况十分接近,预报值偏离实况值的幅度较小,但春夏季预报结果有明显的高估或低估,对极端高值区也存在低估。(4)当前和过去1 h的能见度是影响预报效果的最关键因子,气象因子对汾渭平原PM2.5质量浓度预报存在明显的时间滞后性影响
机构:陕西省农业遥感与经济作物气象服务中心 陕西省气象局秦岭和黄土高原生态环境气象重点实验室 陕西省气象台 陕西省气象科学研究所 作者:张煦庭 刘慧 梁绵 巨菲 高星星
出处:《陕西气象》
基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力
Python是功能强大、免费、开源,实现面向对象的编程语言,能够在不同操作系统和平台使用,简洁的语法和解释性语言使其成为理想的脚本语言。除了标准库,还有丰富的第三方库,Python在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能。上述优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为气象、海洋和水文等地学领域的主流编程语言之一[1]。
人工智能和大数据技术在许多行业都取得了颠覆式的成果,气象和海洋领域拥有海量的模式和观测数据,是大数据和人工智能应用的天然场景。Python也是当前进行机器学习和深度学习应用的最热门语言。对于的气象海洋领域的专业人员,Python是进行机器学习和深度学习工作的首选。
Python软件的安装及入门
1.1 Python背景及其在气象中的应用
1.2 Anaconda解释和安装以及Jupyter配置
1.3 Python基础语法
气象常用科学计算库
2.1 Numpy库
2.2 Pandas库
2.4 Xarray库
气象海洋常用可视化库
可视化库介绍Matplotlib、Cartopy等
3.2 基础绘图
(1)折线图绘制
(2)散点图绘制
(3)填色/等值线
(4)流场矢量图
爬虫和气象海洋数据
(1)Request库的介绍
(2)爬取中央气象台天气图
(3)FNL资料爬取
(4) ERA5下载
气象海洋常用插值方法
(1)规则网格数据插值到站点
(2)径向基函数RBF插值
(3)反距离权重IDW插值
(4)克里金Kriging插值
机器学习基础理论和实操
6.1 机器学习基础原理
(1)机器学习概论
(2)集成学习(Bagging和Boosting)
(3)常用模型原理(随机森林、Adaboost、GBDT、Xgboost、lightGBM)
6.2 机器学习库scikit-learn
(1)sklearn的简介
(2)sklearn完成分类任务
(3)sklearn完成回归任务
机器学习的应用实例
本专题,在详细讲解机器学习常用的两类集成学习算法,Bagging和Boosting,对两类算法及其常用代表模型深入讲解的基础上,结合三个个例,并串讲一些机器学习常用技巧,将理论与实践结合。
7.1机器学习与深度学习在气象中的应用
AI在气象模式订正、短临预报、气候预测等场景的应用
7.2 GFS数值模式的风速预报订正
(1)随机森林挑选重要特征
(2)K近邻和决策树模型订正风速
(3)梯度提升决策树GBDT订正风速
(4)模型评估与对比
7.3 台风预报数据智能订正
(1)CMA台风预报数据集介绍以及预处理
(2)随机森林模型订正台风预报
(3)XGBoost模型订正台风预报
(4)台风“烟花”预报效果检验
7.4 机器学习预测风电场的风功率
(1)lightGBM模型预测风功率
(2)调参利器—网格搜索GridSearch于K折验证
深度学习基础理论和实操
8.1 深度学习基本理论
深度学习基本理论知识讲解,深入了解机器学习的基础理论和工作原理,掌握如何构建和优化神经网络模型(如人工神经网络ANN,卷积神经网络CNN、循环神经网络RNN等),提高对现有深度学习算法和技术的理解和应用能力,更好地应对后续海洋气象相关领域的实际问题和应用。
8.2 Pytorch库
(1)sklearn介绍、常用功能和机器学习方法
经典机器学习库sklearn的常用功能,如鸢尾花、手写字体等公开数据集的获取、划分训练集和测试集、模型搭建和模型验证等。
(2) pytorch介绍、搭建 模型
目前流行的深度学习框架pytorch,了解张量tensor、自动求导、梯度提升等,以BP神经网络学习sin函数为例,掌握如何搭建单层和多层神经网络,以及如何使用GPU进行模型运算。
深度学习的应用实例
本专题,在使用ANN预测浅水方程的基础上,进一步掌握如何使用PINN方法,将动力方程加入模型中,缓解深度学习的物理解释性差的问题。此外,气象数据是典型的时空数据,经典的时序预测方法LSTM,以及空间卷积算法UNET。
9.1深度学习预测浅水方程模式
(1)浅水模型介绍和数据获取
(2) 传统神经网络ANN学习浅水方程
(3)物理约束网络PINN学习浅水方程
9.2 LSTM方法预测ENSO
(4)ENSO简介及数据介绍
(5)LSTM方法原理介绍
(6)LSTM方法预测气象序列数据
9.3深度学习—卷积网络
(1)卷积神经网络介绍
(2)Unet进行雷达回波的预测
EOF统计分析
EOF基础和eofs库的介绍
10.2 EOF分析海表面温度数据
(1)SST数据计算距平,去趋势
(2)SST进行EOF分析,可视化
模式后处理
WRF模式后处理
(1)wrf-python库介绍
(2)提取站点数据
(3)500hPa形式场绘制
(4)垂直剖面图——雷达反射率为例
11.2 ROMS模式后处理
(1)xarray为例操作ROMS输出数据
(2)垂直坐标转换,S坐标转深度坐标
(3)垂直剖面绘制
(4)水平填色图绘制
●Python在气象与海洋中的实践技术应用
●全套区域高精度地学模拟-WRF气象建模、多案例应用精美制图
●WRF模式与Python融合技术在多领域中的应用及精美绘图
●WRF-UCM)高精度城市化气象动力模拟技术与案例实践
●气象水文耦合模式WRF-Hydro前处理、运行及实践
●双碳目标下太阳辐射预报模式WRF-SOLAR模拟方法及改进技术在气象、农林生态、电力等领域中的应用
●基于全球模式比较计划CMIP6与区域气候-化学耦合模式 WRF-Chem 的未来大气污染变化模拟