分支定价算法求解VRPTW问题(代码非原创)

news2025/1/9 20:20:00

参考文献:微信公众号“程序猿声”关于分支定价求解VRPTW的代码
A tutorial on column generation and branch-and-price for vehicle routing problems

框架

对于VRPTW问题,先做线性松弛,调用列生成算法(一种解决大型线性规划问题的精确算法),得到最终RMP(Restricted master problem)。此时,如果得到的是整数解,那么结束算法;否则,更新上界、下界并分支,再在分支节点上重复上述步骤。

  • 列生成算法的具体步骤:对原松弛问题Min(主问题,MP),选择一些列,得到限制性主问题(RLMP)并求解它,得到对偶变量的值;用对偶变量的值,更新子问题的目标函数,目的是找到检验数为负的列,把新列添加给RLMP,继续求解,直到没有检验数为负的列生成了为止。
  • 分支定界算法的具体步骤:
    初始化上界、下界分别为系统最大值、系统最小值,下面我们希望通过分支来缩小他们之间的gap。
    对MIP做线性松弛,用单纯形法求解,如果解中满足Integer feasibility,那么结束算法;否则,更新下界并选择分支变量,做两个分支,对分支用单纯性算法求解,
    如果得到更好的整数解,更新上界;
    如果得到整数解但是没有更好,那么剪枝;
    如果得到的是非整数解,更新下界;
    如此循环,直到上界、下界之间的gap在可接受范围内为止。

细节

VRP问题的表述方式

分两种模型,一种是Arc-flow model,还有一种是set-covering model.
下面这种的是Arc-flow model
在这里插入图片描述
或者
在这里插入图片描述在这里插入图片描述

下面是set-covering model
翻译:上面的模型太弱了,无法使用分支定界算法。上面的模型可以通过Dantzig-Wolfe decomposition,得到下面的模型。下面的模型会有更好的线性松弛。
在这里插入图片描述

在这里插入图片描述
set-covering model的松弛解 可以转化为 arc-flow model的松弛解,但是 反过来不行。
在这里插入图片描述
这里列生成算法作用的是 set-covering model.

分支策略

分支策略添加的约束要和列生成算法相兼容。
基于路径的分支策略可能会导致整个BB树的不平衡,推荐使用基于弧段的分支策略,且后者更具代表性。
基于弧段的分支策略:
针对路径 r k r_k rk,选择一个弧段,当弧段的流量值为分数(介于0到1之间),进行分支:
分支1:解不能包含该弧段;
分支2:解必须包含该弧段;

  • 如何得到分支1?
    在主问题中,只要含有该弧段的都被删除掉;
    在子问题中,该弧段被删除,确保没有使用该弧段的列被生成;

  • 如何得到分支2?
    禁用那些”沾亲带故“的弧段,在代码中通过将弧段dist设置为无穷大做到这一点。

代码(Java调用Cplex)

  • 主函数 Main.java
package BranchAndPrice;

import java.io.IOException;
import java.util.ArrayList;

public class Main {

	public static void main(String[] args) throws IOException {
		branchandbound bp = new branchandbound(); // build bb tree
		paramsVRP instance = new paramsVRP();
		instance.initParams("D:\\VRP问题实践\\DengFahengBPVRPTW-master\\BPVRPTW-master\\dataset\\C101.TXT");
		ArrayList<route> initRoutes = new ArrayList<route>();
		ArrayList<route> bestRoutes = new ArrayList<route>();
		// create root node for bb tree
		bp.BBNode(instance, initRoutes, null, bestRoutes, 0); // fill bestRoutes
		double optCost = 0;
		System.out.println();
		System.out.println("solution >>>");
		for (route bestRoute : bestRoutes) {
			System.out.println(bestRoute.path);
			optCost += bestRoute.cost;
		}

		System.out.println("\nbest Cost = " + optCost);
	}

}

  • 分支定界算法
package BranchAndPrice;

import java.io.IOException;
import java.util.ArrayList;

public class branchandbound {
	double lowerbound;
	double upperbound;

	public branchandbound() {
		lowerbound = -1E10;
		upperbound = 1E10;
	}
	// try to update these two bound s.t. they are closer to each others

	class treeBB { // BB树上的节点
		// this is a linked tree list recording all the branching during Branch and Bound
		treeBB father; // link to the node processed before branching
		treeBB son0; // link to the son on the left of the tree (edge=0; first processed) => need it to compute the global lowerbound
		int branchFrom; // we branch on edges between cities => city origin of the edge
		int branchTo; // we branch on edges between cities => city destination of the edge
		int branchValue; // we branch on edges between cities => value of the branching (remove edge=0; set edge=1)
		double lowestValue; // lower bound on the solution if we start from this node (i.e. looking only down for this tree)
		boolean toplevel; // to compute the global lowerBound, need to know if everything above has been considered
	}

	// 对于给定分支节点branching,按照它的branchFrom和branchTo,重置dist[][],把某些边给禁了
	public void EdgesBasedOnBranching(paramsVRP userParam, treeBB branching,
	                                  boolean recur) {
		int i;
		if (branching.father != null) { // stop before root node
			if (branching.branchValue == 0) { // forbid this edge (in this direction) //  左分支禁用此弧
				// associate a very large distance to this edge to make it unattractive
				userParam.dist[branching.branchFrom][branching.branchTo] = userParam.verybig;
			} else {// 右分支 只允许 该弧被用, 禁用其他”沾亲带故“的弧
			    // impose this edge (in this direction)
				// associate a very large and unattractive distance to all edges
				// starting from "branchFrom" excepted the one leading to "branchTo"
				// and excepted when we start from depot (several vehicles)
				if (branching.branchFrom != 0) { // except 'branchTo'
					for (i = 0; i < branching.branchTo; i++)
						userParam.dist[branching.branchFrom][i] = userParam.verybig;
					// I guess, in this way, it can skip setting the distance between i and 'branchTo' this node
					for (i++; i < userParam.nbclients + 2; i++)
						userParam.dist[branching.branchFrom][i] = userParam.verybig;
				}
				// associate a very large and unattractive distance to all edges ending
				// at "branchTo" excepted the one starting from "branchFrom"
				// and excepted when the destination is the depot (several vehicles)
				if (branching.branchTo != userParam.nbclients + 1) {
					for (i = 0; i < branching.branchFrom; i++)
						userParam.dist[i][branching.branchTo] = userParam.verybig;
					for (i++; i < userParam.nbclients + 2; i++)
						userParam.dist[i][branching.branchTo] = userParam.verybig;
				}
				// forbid the edge in the opposite direction
				userParam.dist[branching.branchTo][branching.branchFrom] = userParam.verybig;
			}
			if (recur) EdgesBasedOnBranching(userParam, branching.father, true);// ??
		}
	}

	public boolean BBNode(paramsVRP userParam, ArrayList<route> routes,
                          treeBB branching, ArrayList<route> bestRoutes, int depth)
			throws IOException {// bestRoutes用于记录目前收集到的最好的可行路径
		// userParam (input) : all the parameters provided by the users (cities,
		// roads...)
		// routes (input) : all (but we could decide to keep only a subset) the
		// routes considered up to now (to initialize the Column generation process)
		// branching (input): BB branching context information for the current node
		// to process (branching edge var, branching value, branching from...)
		// bestRoutes (output): best solution encountered

		// routes 收集了 很多路径,那些.getQ>0的路径表示 被使用了
		int i, j, bestEdge1, bestEdge2, prevcity, city, bestVal;// previous city
		double coef, bestObj, change, CGobj;
		boolean feasible;

		try {

			// check first that we need to solve this node. Not the case if we have
			// already found a solution within the gap precision
			if ((upperbound - lowerbound) / upperbound < userParam.gap)
				return true;

			// init
			if (branching == null) { // root node - first call
				// first call - root node
				treeBB newNode = new treeBB();
				newNode.father = null;
				newNode.toplevel = true; // ??
				newNode.branchFrom = -1;
				newNode.branchTo = -1;
				newNode.branchValue = -1;
				newNode.son0 = null;
				branching = newNode;
			}

			// display some local info
			if (branching.branchValue < 1) {// 这条弧段 被禁用
				System.out.println("\nEdge from " + branching.branchFrom + " to "
						+ branching.branchTo + ": forbid");
			} else {// 这条弧段 被选择
				System.out.println("\nEdge from " + branching.branchFrom + " to "
						+ branching.branchTo + ": set");
			}
			int MB = 1024 * 1024;
			Runtime runtime = Runtime.getRuntime();
			System.out.print("Java Memory=> Total:" + (runtime.totalMemory() / MB)
					+ " Max:" + (runtime.maxMemory() / MB) + " Used:"
					+ ((runtime.totalMemory() - runtime.freeMemory()) / MB) + " Free: "
					+ runtime.freeMemory() / MB);

			// Compute a solution for this node using Column generation
			columngen CG = new columngen();

			CGobj = CG.computeColGen(userParam, routes);// objValue of RLMP, relaxed linear master problem
			// 生成的新列都会加入到 route中
			// feasible ? Does a solution exist?
			if ((CGobj > 2 * userParam.maxlength) || (CGobj < -1e-6)) {
				// can only be true when the routes in the solution include forbidden edges (can happen when the BB set branching values)
				System.out.println("RELAX INFEASIBLE | Lower bound: " + lowerbound
						+ " | Upper bound: " + upperbound + " | Gap: "
						+ ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
						+ depth + " | " + routes.size() + " routes");
				return true; // stop this branch
			}
			branching.lowestValue = CGobj;// 当前分支的下界, 当前分支节点处的最终的RMP的最优值
			// routes 是 最终的RLMP的最优基 对应的路径

			// update the global lowerBound when required
			if ((branching.father != null) && (branching.father.son0 != null)
					&& branching.father.toplevel) {// 有父节点,且父节点有左孩子,父节点的lowerbound已经计算过了
				// all nodes above and on the left have been processed=> we can compute
				// a new lowerBound
				lowerbound = Math.min(branching.lowestValue, branching.father.son0.lowestValue);
				branching.toplevel = true;
			} else if (branching.father == null) {
				// root node
				lowerbound = CGobj;
			}

			if (branching.lowestValue > upperbound) {
				CG = null;
				System.out.println("CUT | Lower bound: " + lowerbound
						+ " | Upper bound: " + upperbound + " | Gap: "
						+ ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
						+ depth + " | Local CG cost: " + CGobj + " | " + routes.size()
						+ " routes");
				return true; // cut this useless branch
			} else {
				// ///
				// check the (integer) feasibility. Otherwise search for a branching
				// variable
				feasible = true;
				bestEdge1 = -1;
				bestEdge2 = -1;
				bestObj = -1.0;
				bestVal = 0;
				// 基于路段的分支策略,书上的第二种
				// 路径的使用次数 转成 边的使用次数,切换了 决策变量
				// transform the path variable (of the CG model) into edges variables
				for (i = 0; i < userParam.nbclients + 2; i++) {
					java.util.Arrays.fill(userParam.edges[i], 0.0); // initialize the ith row
					// userParam.egdes is an array
				}
				for (route r : routes) {
					if (r.getQ() > 1e-6) {// 使用路径r的次数 大于 0,但是因为CG解的是线性松弛问题,所以r.getQ是double型
						// we consider only the routes in the current local solution
						ArrayList<Integer> path = r.getpath(); // get back the sequence of
						// cities (path for this route)
						prevcity = 0;
						for (i = 1; i < path.size(); i++) {
							city = path.get(i);
							// 把 路径上的Q值 赋予到 路径的边上
							userParam.edges[prevcity][city] += r.getQ(); // convert into edges
							prevcity = city;
						}
					}
				}

				// find a fractional edge 选择分支弧段
				for (i = 0; i < userParam.nbclients + 2; i++) {
					for (j = 0; j < userParam.nbclients + 2; j++) {
						coef = userParam.edges[i][j];
						if ((coef > 1e-6) && ((coef < 0.9999999999) || (coef > 1.0000000001))) {
							// ?? what if coef=2, 这种情况也同样被标记成feasible=false??有可能出现么? 答:不会,值介于 0到1之间
							// coef 大于0, 且, 小于1或大于1
							// coef is fractional// 介于 0到1之间
							// this route has a fractional coefficient in the solution =>
							// should we branch on this one?
							feasible = false;
							// what if we impose this route in the solution? Q=1
							// keep the ref of the edge which should lead to the largest change
							change = Math.min(coef, Math.abs(1.0 - coef));// min(0.2,0.8) = 0.2
							change *= routes.get(i).getcost();
							if (change > bestObj) { // ??
								bestEdge1 = i;
								bestEdge2 = j;
								bestObj = change;
								bestVal = (Math.abs(1.0 - coef) > coef) ? 0 : 1;// bestVal=1 if coef>0.5
							} // 选择分支弧段 (i_q,i_(q+1))
						}
					}
				}
				// 如果需要分支,选定 分支弧段为 [bestEdge1,bestEdge2]

				if (feasible) { // 说明 没有 取值为分数的 edge
					if (branching.lowestValue < upperbound) { // new incumbant feasible solution!
						upperbound = branching.lowestValue;
						bestRoutes.clear();
						for (route r : routes) {
							if (r.getQ() > 1e-6) {// 投入使用的路径,记录到bestRoutes中
								// 创建复制品,存到bestRoutes中
								route optim = new route();
								optim.setcost(r.getcost());
								optim.path = r.getpath();
								optim.setQ(r.getQ());
								bestRoutes.add(optim);
							}
						}
						System.out.println("OPT | Lower bound: " + lowerbound
								+ " | Upper bound: " + upperbound + " | Gap: "
								+ ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
								+ depth + " | Local CG cost: " + CGobj + " | " + routes.size()
								+ " routes");
						System.out.flush();
					} else { //?? feasible && branching.lowerestValue>=upperbound
						// since we already got '>' done, so here, (feasible && branching.lowerestValue=upperbound)
                       // 是整数解,但不是比upperbound更好的整数解,所以 无需记录
                        System.out.println("FEAS | Lower bound: " + lowerbound
                                + " | Upper bound: " + upperbound + " | Gap: "
                                + ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
                                + depth + " | Local CG cost: " + CGobj + " | " + routes.size()
                                + " routes");
                    }
					return true;
				} else {// infeasible 、、 fraction
					System.out.println("INTEG INFEAS | Lower bound: " + lowerbound
							+ " | Upper bound: " + upperbound + " | Gap: "
							+ ((upperbound - lowerbound) / upperbound) + " | BB Depth: "
							+ depth + " | Local CG cost: " + CGobj + " | " + routes.size()
							+ " routes");
					System.out.flush();
					// ///
					// branching (diving strategy)

					// 分支1: 删除掉含有弧段[bestEdge1,bestEdge2]的列/路径
					// first branch -> set edges[bestEdge1][bestEdge2]=0
					// record the branching information in a tree list
					treeBB newNode1 = new treeBB();
					newNode1.father = branching;
					newNode1.branchFrom = bestEdge1;
					newNode1.branchTo = bestEdge2;
					newNode1.branchValue = bestVal; // ?!first version was not with bestVal
					// but with 0
					newNode1.lowestValue = -1E10;
					newNode1.son0 = null;

					// branching on edges[bestEdge1][bestEdge2]=0
					//在函数EdgesBasedOnBraning函数中, newNode1.branchValue 提示此分支是被禁用的
					EdgesBasedOnBranching(userParam, newNode1, false); // 修改了dist[][]
					// ?? 为什么recur取值为false??

					// the initial lp for the CG contains all the routes of the previous
					// solution less(去掉分支的边) the routes containing this arc (arc bestEdge1-->bestEdge2)
					// 在routes的基础上,删除掉含有弧段[bestEdge1,bestEdge2]的列/路径;记录余下路径到nodeRoutes中
					ArrayList<route> nodeRoutes = new ArrayList<route>();
					for (route r : routes) {
						ArrayList<Integer> path = r.getpath();
						boolean accept = true;
						if (path.size() > 3) { // we must keep trivial routes
							// Depot-City-Depot in the set to ensure
							// feasibility of the CG
							prevcity = 0;
							for (j = 1; accept && (j < path.size()); j++) {
								city = path.get(j);
								if ((prevcity == bestEdge1) && (city == bestEdge2))
									accept = false;
								prevcity = city;
							}
						}
						if (accept) nodeRoutes.add(r);
					}

					boolean ok;
					ok = BBNode(userParam, nodeRoutes, newNode1, bestRoutes, depth + 1);
					nodeRoutes = null; // free memory
					if (!ok) {// “没结果”会返回false, "有结果"指 因最优性或可行性被剪枝、找到最优解等。
						return false;
					}

					branching.son0 = newNode1;

					// 分支2:必须“直接”含有弧段[bestEdge1,bestEdge2]的路径,排除掉 “沾亲带故”的路径
					// second branch -> set edges[bestEdge1][bestEdge2]=1
					// record the branching information in a tree list
					treeBB newNode2 = new treeBB();
					newNode2.father = branching;
					newNode2.branchFrom = bestEdge1;
					newNode2.branchTo = bestEdge2;
					newNode2.branchValue = 1 - bestVal; // first version: always 1
					newNode2.lowestValue = -1E10;
					newNode2.son0 = null;

					// branching on edges[bestEdge1][bestEdge2]=1
					// second branching=>need to reinitialize the dist matrix
					// why, Ans: 因为branch newNode1之后,调用了EdgeBasedOnBranching函数,修改到了dist[][]
					for (i = 0; i < userParam.nbclients + 2; i++) {
                        System.arraycopy(userParam.distBase[i], 0, userParam.dist[i], 0,
                              userParam.nbclients + 2);
                    }// 从这里看到distBase的作用在于,为 dist矩阵 存根
					//reinitialize了,因此需要recur递归一下
					EdgesBasedOnBranching(userParam, newNode2, true); // 为什么这里recur取值true?
					// the initial lp for the CG contains all the routes of the previous
					// solution less the routes incompatible with this arc,这些路径的弧段都被EdgeBasedOnBranching函数标记为verybig
					// “沾亲带故”: 那些路径要么含节点bestEdge1,但不是直接去向bestEdge2; 要么含节点bestEdge2,但不是直接从bestEdge1来
					// 从routes中 选 含有此弧段的路径, 记录在 nodeRoute2中
					ArrayList<route> nodeRoutes2 = new ArrayList<route>();
					for (route r : routes) {
						ArrayList<Integer> path = r.getpath();
						boolean accept = true;
						if (path.size() > 3) { // we must keep trivial routes
							// Depot-City-Depot in the set to ensure
							// feasibility of the CG
							prevcity = 0;
							for (i = 1; accept && (i < path.size()); i++) {
								city = path.get(i);
								if (userParam.dist[prevcity][city] >= userParam.verybig - 1E-6) accept = false;
								prevcity = city;
							}
						}
						if (accept) nodeRoutes2.add(r);
					}

					ok = BBNode(userParam, nodeRoutes2, newNode2, bestRoutes, depth + 1);
					nodeRoutes2 = null;

					// update lowest feasible value of this node
					branching.lowestValue = Math.min(newNode1.lowestValue, newNode2.lowestValue);

					return ok;// boolean
				}
			}

		} catch (IOException e) {
			System.err.println("Error: " + e);
		}
		return false;
	}

}

  • 列生成算法 columngen.java
package BranchAndPrice;

/**
 * Asymetric VRP with Resources Constraints (Time Windows and Capacity)
 * Branch and Price algorithm (Branch and Bound + Column generation)
 * For educational purpose only!  No code optimization.  Just to understand the main basic steps of the B&P algorithm.
 * Pricing through Dynamic Programming of the Short Path Problem with Resources Constraints (SPPRC)
 * Algorithm inspired by the book
 * Desrosiers, Desaulniers, Solomon, "Column Generation", Springer, 2005 (GERAD, 25th anniversary)
 * => Branch and bound (class BPACVRPTW)
 * => Column generation (class columngen) : chapter 3
 * => Pricing SPPRC (class SPPRC): chapter 2
 * CPLEX code for the column generation inspired by the example "CutStock.java" provided in the examples directory of the IBM ILOG CPLEX distribution
 *
 * @author mschyns
 * M.Schyns@ulg.ac.be
 */

import java.io.IOException;
import java.text.DecimalFormat;
import java.util.ArrayList;

import ilog.concert.*;
import ilog.cplex.*;

public class columngen {

	static class IloNumVarArray {
		// Creation of a new class similar to an ArrayList for CPLEX unknowns
		// taken from "cutsotck.java"
		int _num = 0;
		IloNumVar[] _array = new IloNumVar[32];

		void add(IloNumVar ivar) {// automative expansion
			if (_num >= _array.length) {
				IloNumVar[] array = new IloNumVar[2 * _array.length];
				System.arraycopy(_array, 0, array, 0, _num);
				_array = array;
			}
			_array[_num++] = ivar;
		}

		IloNumVar getElement(int i) {
			return _array[i];
		}

		int getSize() {
			return _num;
		}
	}

	public double computeColGen(paramsVRP userParam, ArrayList<route> routes)
			throws IOException {// 生成的新列都会加入到 routes中
		int i, j, prevcity, city;
		double cost, obj;
		double[] pi; // p_i, the value of dual variables
		boolean oncemore;

		try {

			// ---------------------------------------------------------
			// construct the model for the Restricted Master Problem
			// ---------------------------------------------------------
			// warning: for clarity, we create a new cplex env each time we start a
			// Column Generation
			// this class contains (nearly) everything about CG and could be used
			// independently
			// However, since the final goal is to encompass it inside 锟� Branch and
			// Bound (BB),
			// it would (probably) be better to create only once the CPlex env when we
			// initiate the BB and to work with the same (but adjusted) lp matrix each
			// time
			IloCplex cplex = new IloCplex();

			IloObjective objfunc = cplex.addMinimize();

			// for each vertex/client, one constraint (chapter 3, 3.23 )
			IloRange[] lpmatrix = new IloRange[userParam.nbclients];// start from 0
			for (i = 0; i < userParam.nbclients; i++)
				lpmatrix[i] = cplex.addRange(1.0, Double.MAX_VALUE); // 表示每个客户都要被服务到
			// for each constraint, right member >=1
			// lpmatrix[i] = cplex.addRange(1.0, 1.0);
			// or for each constraint, right member=1 ... what is the best?

			// Declaration of the variables
			IloNumVarArray y = new IloNumVarArray(); // y_p to define whether a path p
			// is used
			// y_p 表示这条路是否使用
			// 集覆盖模型

			// Populate the lp matrix and the objective function
			// first with the routes provided by the argument 'routes' of the function
			// (in the context of the Branch and Bound, it would be a pity to start
			// again the CG from scratch at each node of the BB!)
			// (we should reuse parts of the previous solution(s))
			// 复用之前的路径们,建立他们对应的列
			for (route r : routes) {
				int v;
				cost = 0.0;
				prevcity = 0;
				// total cost of route r
				for (i = 1; i < r.getpath().size(); i++) {
					city = r.getpath().get(i);
					cost += userParam.dist[prevcity][city];
					prevcity = city;
				}

				r.setcost(cost);
				// 上面计算新路径的成本c_p
				// 按列建模,为RLMP添加新的列
				IloColumn column = cplex.column(objfunc, r.getcost());// obj coefficient
				// constraint coefficient
				for (i = 1; i < r.getpath().size() - 1; i++) { // nodes this route passed, except two depots
					v = r.getpath().get(i) - 1;// the ith customer on the route r
					column = column.and(cplex.column(lpmatrix[v], 1.0));
					// coefficient of y_i in (3.23) => 0 for the other y_p
				}// say 0-2-3-6-0, 这一列第1,2,5行处是1,其余都是0
				// creation of the variable y_i whose range is [0,+++]
				y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE));

			}
			// 新建一些列
			// complete the lp with basic route to ensure feasibility
			// initially choose several columns, 初始基可行解,每条路径只访问一个客户,构造得RLMP,并将此路径添加到routes
			if (routes.size() < userParam.nbclients) { // a priori true only the first time
				for (i = 0; i < userParam.nbclients; i++) { // customer i
					cost = userParam.dist[0][i + 1]
							+ userParam.dist[i + 1][userParam.nbclients + 1];
					// 新列加到目标函数上
					IloColumn column = cplex.column(objfunc, cost); // obj coefficient
					// 新列加到约束上
					column = column.and(cplex.column(lpmatrix[i], 1.0)); // coefficient of
					// y_i in (3.23)
					// => 0 for the
					// other y_p
					// 新列产生的新变量
					y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE)); // creation of the
					// variable y_i
					// 新列对应的 新路径
					route newroute = new route();
					newroute.addcity(0);
					newroute.addcity(i + 1);
					newroute.addcity(userParam.nbclients + 1);
					newroute.setcost(cost);
					routes.add(newroute);
				}
			}

			// cplex.exportModel("model.lp");

			// CPlex params
			cplex.setParam(IloCplex.IntParam.RootAlgorithm, IloCplex.Algorithm.Primal);
			cplex.setOut(null);
			// cplex.setParam(IloCplex.DoubleParam.TiLim,30); // max number of
			// seconds: 2h=7200 24h=86400

			// ---------------------------------------------------------
			// column generation process
			// ---------------------------------------------------------
			DecimalFormat df = new DecimalFormat("#0000.00"); // 保留两位小数的十进制格式
			oncemore = true;
			double[] prevobj = new double[100]; // previous objective values, used to check stability
			int nbroute; // number of routes
			int previ = -1; // previous index
			while (oncemore) { // oncemore 表示 是否找到了新列,是那么继续找,否那么结束列生成

				oncemore = false;// 后面如果找到了新列,就会被更新成true
				// ---------------------------------------s------------------
				// solve the current RMP
				// ---------------------------------------------------------
				if (!cplex.solve()) {
					System.out.println("CG: relaxation infeasible!");
					return 1E10;
				}// now, CG: relaxation is feasible
				prevobj[(++previ) % 100] = cplex.getObjValue();
				// store the 30 last obj values to check stability afterwards

				// System.out.println(cplex.getStatus());
				// cplex.exportModel("model.lp");

				// ---------------------------------------------------------
				// solve the subproblem to find new columns (if any)
				// ---------------------------------------------------------
				// 利用对偶变量的值, 更新子问题的目标函数
				// first define the new costs for the subproblem objective function
				// (SPPRC)
				pi = cplex.getDuals(lpmatrix); // dual variables of those constraints 'lpmatrix'
				for (i = 1; i < userParam.nbclients + 1; i++) // from customer i
					for (j = 0; j < userParam.nbclients + 2; j++) // to any sites
						userParam.cost[i][j] = userParam.dist[i][j] - pi[i - 1];
				// 修改到 userParams.cost[][], 后面解子问题SPPRC会使用到这一结果
				// 详细见,SPPRC.java的结尾部分,扩展路径得到的新标签的cost的计算
				// 因为已经在paramVRP.initParam设置过不可行边的距离为 正无穷, 所以 这里第二个for循环是0~nbclients+2

				// start dynamic programming
				SPPRC sp = new SPPRC();// subproblem
				ArrayList<route> routesSPPRC = new ArrayList<route>();

				nbroute = userParam.nbclients; // arbitrarily limit to the 5 first
				// shortest paths with negative cost
				// if ((previ>100) &&
				// (prevobj[(previ-3)%100]-prevobj[previ%100]<0.0003*Math.abs((prevobj[(previ-99)%100]-prevobj[previ%100]))))
				// {
				// System.out.print("/");
				// complete=true; // it the convergence is too slow, start a "complete"
				// shortestpast
				// }
				sp.shortestPath(userParam, routesSPPRC, nbroute); // fill routesSPPRC, 收集到 检验数为负 的可行最短路径
				sp = null;

				// /
				// parameter here
				// 根据子问题求解结果,添加新列、新决策变量
				if (routesSPPRC.size() > 0) {
					for (route r : routesSPPRC) {
//             if (userParam.debug) {
//             System.out.println(" "+r.getcost());
//             }
						ArrayList<Integer> rout = r.getpath();
						prevcity = rout.get(1);
						cost = userParam.dist[0][prevcity];
						IloColumn column = cplex.column(lpmatrix[rout.get(1) - 1], 1.0);
						for (i = 2; i < rout.size() - 1; i++) {
							city = rout.get(i);
							cost += userParam.dist[prevcity][city];
							prevcity = city;
							column = column.and(cplex.column(lpmatrix[rout.get(i) - 1], 1.0));
							// coefficient of y_i in (3.23) => 0 for the other y_p
						}
						cost += userParam.dist[prevcity][userParam.nbclients + 1];
						// obj func
						column = column.and(cplex.column(objfunc, cost));
						// decision variable
						y.add(cplex.numVar(column, 0.0, Double.MAX_VALUE, // 根据新建列,创建一个变量,加入模型中
								"P" + routes.size())); // creation of the variable y_i
						// new route
						r.setcost(cost);
						routes.add(r);

						oncemore = true;// 已经找到了新路径,提示下一轮接着找
					}
					System.out.print("\nCG Iter " + previ + " Current cost: "
							+ df.format(prevobj[previ % 100]) + " " + routes.size()
							+ " routes"); // routes.size 表示 当前已经有多少条路径了
					System.out.flush();// ??
				}
				//if (previ % 50 == 0)
				routesSPPRC = null;
			}// end while(oncemore)
			// finished finding and adding new columns

			System.out.println();

			// final result fo cplex
			for (i = 0; i < y.getSize(); i++) // variables
				// route's Q value means whether this route is chosed or not
				routes.get(i).setQ(cplex.getValue(y.getElement(i)));// set Q value of route i as y_i
			obj = cplex.getObjValue(); // mmmmhhh: to check. To be entirely safe, we
			// should recompute the obj using the distBase
			// matrix instead of the dist matrix
			// ?? I thought disBase and dist matrix are the same....

			cplex.end();
			return obj;
		} catch (IloException e) {
			System.err.println("Concert exception caught '" + e + "' caught");
		}
		return 1E10;
	}
}

  • 用标号法求解带资源约束的最短路径问题
package BranchAndPrice;

import java.util.ArrayList;
import java.util.Comparator;
import java.util.TreeSet;

// shortest path with resource constraints
// inspired by Irnish and Desaulniers, "SHORTEST PATH PROBLEMS WITH RESOURCE CONSTRAINTS"
// for educational demonstration only - (nearly) no code optimization
//
// four main lists will be used:
// labels: array (ArrayList) => one dimensional unbounded vector
//		 list of all labels created along the feasible paths (i.e. paths satisfying the resource constraints)
//		
// U: sorted list (TreeSet) => one dimensional unbounded vector
//		sorted list containing the indices of the unprocessed labels (paths that can be extended to obtain a longer feasible path)
//
// P: sorted list (TreeSet) => one dimensional unbounded vector
//		sorted list containing the indices of the processed labels ending at the depot with a negative cost
//
// city2labels: matrix (array of ArrayList) => nbClients x unbounded
//		for each city, the list of (indices of the) labels attached to this city/vertex
//		before processing a label at vertex i, we compare pairwise all labels at the same vertex to remove the dominated ones

public class SPPRC {
	paramsVRP userParam;// #vehicles, capacity, ready time, due time,...
	ArrayList<label> labels; // list of labels

	class label { //路径和资源消耗情况,组成标签
		// we use a labelling algorithm. 标签算法
		// labels are attached to each vertex to specify the state of the resources 标签标识了各种资源的使用状态
		// when we follow a corresponding feasible path ending at this vertex 沿可行路径到达当前顶点
		public int city;                // current vertex
		public int indexPrevLabel;    // previous label in the same path (i.e. previous vertex in the same path with the state of the resources)
		// cost,tTime,demand表示这个标签的资源消耗情况
		public double cost;                // first resource: cost (e.g. distance or strict travel time)
		public float tTime;                // second resource: travel time along the path (including wait time and service time)
		public double demand;                // third resource: demand,i.e. total quantity delivered to the clients encountered on this path
		public boolean dominated;            // is this label dominated by another one? i.e. if dominated, forget this path.
		public boolean[] vertexVisited;

		label(int a1, int a2, double a3, float a4, double a5, boolean a6, boolean[] a7) {
			city = a1;
			indexPrevLabel = a2;
			cost = a3;
			tTime = a4;
			demand = a5;
			dominated = a6;
			vertexVisited = a7;
		}
	} // end class label

	class MyLabelComparator implements Comparator<Integer> {
		// the U treeSet is an ordered list
		// to maintain the order, we need to define a comparator: cost is the main criterium
		public int compare(Integer a, Integer b) {
			label A = labels.get(a);
			label B = labels.get(b);

			// Be careful!  When the comparator returns 0, it means that the two labels are considered EXACTLY the same ones!
			// This comparator is not only used to sort the lists!  When adding to the list, a value of 0 => not added!!!!!
			// 因为这里的cost等都是double型,在计算机中存在精度的问题,所以需要自己定义
			// 先比较cost, --> city when cities are the same, 继续比较 time,demand, 访问节点顺序
			if (A.cost - B.cost < -1e-7)
				return -1;
			else if (A.cost - B.cost > 1e-7)
				return 1;
			else {
				if (A.city == B.city) {
					if (A.tTime - B.tTime < -1e-7)
						return -1;
					else if (A.tTime - B.tTime > 1e-7)
						return 1;
					else if (A.demand - B.demand < -1e-7)
						return -1;
					else if (A.demand - B.demand > 1e-7)
						return 1;
					else {
						int i = 0;
						while (i < userParam.nbclients + 2) {
							if (A.vertexVisited[i] != B.vertexVisited[i]) {
								if (A.vertexVisited[i])// 相比于B, A提前访问了i,所以返回A
									return -1;
								else
									return 1;
							}
							i++;
						}
						return 0;
					}
				} else if (A.city > B.city)
					return 1;
				else
					return -1;
			}
		}
	}


	public void shortestPath(paramsVRP userParamArg, ArrayList<route> routes, int nbRoute) {
		// 标号算法的主体部分,因为有删除标签的行为,所以标签校正算法
		label current;
		int i, j, idx, nbsol, maxSol;
		double d, d2;//cumutive demand of the next customer and the next and next customer
		int[] checkDom;
		float tt, tt2; // timePoint when we arrive the next customer i and the next and next customer j
		Integer currentidx; // the index of current label

		this.userParam = userParamArg;
		// unprocessed labels list => ordered TreeSet List (?optimal:  need to be sorted like this?)
		// 这里的“未处理”表示“未拓展”的
		TreeSet<Integer> U = new TreeSet<Integer>(new MyLabelComparator());   // unprocessed labels list

		// processed labels list => ordered TreeSet List , “处理过的”表示“已经拓展的”
		TreeSet<Integer> P = new TreeSet<Integer>(new MyLabelComparator());   // processed labels list

		// array of labels // 一个标签,很像一个状态:从哪里来,现在在哪里,路上访问了谁,耗费了多少资源
		labels = new ArrayList<label>(2 * userParam.nbclients); // initial size at least larger than nb clients
		boolean[] cust = new boolean[userParam.nbclients + 2];

		// for depot 0
		cust[0] = true;// vertexVisited
		for (i = 1; i < userParam.nbclients + 2; i++) cust[i] = false;
		labels.add(new label(0, -1, 0.0, 0, 0, false, cust));    // first label: start from depot (client 0)
		U.add(0);

		// for each city, an array with the index of the corresponding labels (for dominance)
		checkDom = new int[userParam.nbclients + 2];// 每个客户节点 被检查过“占优性”的节点有多少个
		ArrayList<Integer>[] city2labels = new ArrayList[userParam.nbclients + 2];
		for (i = 0; i < userParam.nbclients + 2; i++) {
			city2labels[i] = new ArrayList<Integer>();
			checkDom[i] = 0;  // index of the first label in city2labels that needs to be checked for dominance (last labels added)
		}
		city2labels[0].add(0);

		nbsol = 0;
		maxSol = 2 * nbRoute;
		while ((U.size() > 0) && (nbsol < maxSol)) {
			// second term if we want to limit to the first solutions encountered to speed up the SPPRC (perhaps not the BP)
			// remark: we'll keep only nbRoute, but we compute 2 x nbRoute!
			// It makes a huge difference => we'll keep the most negative ones
			// this is something to analyze further!  how many solutions to keep and which ones?
			// process one label => get the index AND remove it from U
			currentidx = U.pollFirst(); // 从队首弹出一个 待拓展的路径的下标
			current = labels.get(currentidx);

			// check for dominance 查看 当前城市的标签们 有没有 被占优的,要删除掉 被占优的标签
			// code not fully optimized:
			int l1, l2;
			boolean pathdom;
			label la1, la2;
			ArrayList<Integer> cleaning = new ArrayList<Integer>();
			// check for dominance between the labels added since the last time
			// we came here with this city and all the other ones
			// ?? checkDom?? here, why not directly use i=0
			for (i = checkDom[current.city]; i < city2labels[current.city].size(); i++) {
				for (j = 0; j < i; j++) {
					l1 = city2labels[current.city].get(i);
					l2 = city2labels[current.city].get(j);
					la1 = labels.get(l1);
					la2 = labels.get(l2);
					// could happen since we clean 'city2labels' thanks
					// to 'cleaning' only after the double loop
					if (!(la1.dominated || la2.dominated)) { // 两个标签暂时都没有被占优
						// Q1: 判断 标签2 是否被占优了
						pathdom = true;
						for (int k = 1; pathdom && (k < userParam.nbclients + 2); k++) {
							//la1没有访问节点k 或者 la2访问了节点k 、、说明  la1对应的路径比la2短
							// if pathdom=true, then it means la1来过的 la2必定也来过
							// 看书! la1 访问过的节点 少于 la2 访问过的节点
							pathdom = (!la1.vertexVisited[k] || la2.vertexVisited[k]);
						}
						if (pathdom && (la1.cost <= la2.cost) && (la1.tTime <= la2.tTime)
								&& (la1.demand <= la2.demand)) {
							labels.get(l2).dominated = true;// l2 被占优了
							U.remove((Integer) l2);
							cleaning.add(l2);
							pathdom = false; // ?? why bother to do this
							//System.out.print(" ###Remove"+l2);
						}

						// Q2: 判断 标签1 是否被占优了
						pathdom = true;
						for (int k = 1; pathdom && (k < userParam.nbclients + 2); k++) {
							//la2没有访问节点k或者la1访问了节点k
							//如果pathdom=true, that means la2 的沿途节点数 比 la1少, 因为la2访问过的,la1必然访问过
							pathdom = (!la2.vertexVisited[k] || la1.vertexVisited[k]);
						}
						if (pathdom && (la2.cost <= la1.cost) && (la2.tTime <= la1.tTime) && (la2.demand <= la1.demand)) {
							labels.get(l1).dominated = true;// l1被占优了
							U.remove(l1);
							cleaning.add(l1);
							//System.out.print(" ###Remove"+l1);
							j = city2labels[current.city].size();// ?? get out of this for loop, so I guess it's kind of speed-up
						}
					}
				}
			}

			for (Integer c : cleaning)
				city2labels[current.city].remove((Integer) c);   // a little bit confusing but ok since c is an Integer and not an int!

			cleaning = null;
			// for current.city, how many non-denominant labels have we checked?
			checkDom[current.city] = city2labels[current.city].size();  // update checkDom: all labels currently in city2labels were checked for dom.

			// expand REF
			if (!current.dominated) {// 当前的这个label没有被占优
				//System.out.println("Label "+current.city+" "+current.indexPrevLabel+" "+current.cost+" "+current.ttime+" "+current.dominated);
				if (current.city == userParam.nbclients + 1) { // ??shortest path candidate to the depot! 此时 不能再扩展路径了
					if (current.cost < -1e-7) {                // SP candidate for the column generation
						P.add(currentidx);// 当前标签没有被占优,将它加到 已处理的集合P 中
						nbsol = 0; // 数 集合P 中 未被占优的标签 的个数
						for (Integer labi : P) { // labi : label index
							label s = labels.get(labi);
							if (!s.dominated)
								nbsol++;
						}
					}
				} else {
					// if not the depot, we can consider extensions of the path
					for (i = 0; i < userParam.nbclients + 2; i++) { // try to reach Customer i
						// don't go back to a vertex already visited or along a forbidden edge
						// expand this label to some customer i
						if ((!current.vertexVisited[i]) &&
								(userParam.dist[current.city][i] < userParam.verybig - 1e-6)) {
							// ttime
							tt = (float) (current.tTime + userParam.ttime[current.city][i]
									+ userParam.s[current.city]);
							if (tt < userParam.a[i])// 提前到了,等到时间窗开放,才能服务
								tt = userParam.a[i];
							// demand
							d = current.demand + userParam.d[i];
							//System.out.println("  -- "+i+" d:"+d+" t:"+tt);

							//the potential next customer is feasible?
							if ((tt <= userParam.b[i]) && (d <= userParam.capacity)) {
								// satisfy the time window constraint and capacity constraint
								// current.city --> i
								idx = labels.size();
								boolean[] newCust = new boolean[userParam.nbclients + 2]; // vertextVisited
								System.arraycopy(current.vertexVisited, 0, newCust,
										0, userParam.nbclients + 2);
								newCust[i] = true;
								//speedup: third technique - Feillet 2004 as mentioned in Laporte's paper 、、??
								// current.city --> i --X--> j, so we marke all infeasible points j as 'visited'
								// then we could skip this point
								for (j = 1; j <= userParam.nbclients; j++) {
									if (!newCust[j]) {
										tt2 = (float) (tt + userParam.ttime[i][j] + userParam.s[i]);
										d2 = d + userParam.d[j];
										if ((tt2 > userParam.b[j]) || (d2 > userParam.capacity)) {
											newCust[j] = true;  // useless to visit this client , so marker it as 'visited'
										}
									}
								}
								// expand this label and then we obtain a new label( whose city is i) that is seen as unprocessed, so push it into U
								// label: city, indexPrevLabel, cost,tTime,demand, dominated, vertexVisited
								// !! 这里 current.cost + userParam.cost[current.city][i] 用到了 列生成算法 解主问题,得到对偶变量的值,然后更新了userParams.cost[][]
								labels.add(new label(i, currentidx, current.cost + userParam.cost[current.city][i], tt, d, false, newCust));    // first label: start from depot (client 0)
								if (!U.add((Integer) idx)) { // idx: index of this new label
									// only happens if there exists already a label at this vertex with the same cost, time and demand and visiting the same cities before
									// It can happen with some paths where the order of the cities is permuted
									// I guess, e,g, 0-1-2-3-0, 0-3-1-2-0
									labels.get(idx).dominated = true; // => we can forget this label and keep only the other one?? only keep the previous one
									// ?? but how can you do this? why?
								}
								else {
									city2labels[i].add(idx);
								}
							}
						}
					}
				}
			}
		}
		// clean
		checkDom = null;

		// filtering: find the path from depot to the destination
		Integer lab;
		i = 0;
		while ((i < nbRoute) && ((lab = P.pollFirst()) != null)) {
			label s = labels.get(lab);
			if (!s.dominated) {
				if (/*(i < nbroute / 2) ||*/ (s.cost < -1e-4)) {
					// System.out.println(s.cost);
					//        	if(s.cost > 0) {
					//        		System.out.println("warning >>>>>>>>>>>>>>>>>>>>");
					//        	}
					route newRoute = new route();
					newRoute.setcost(s.cost);
					newRoute.addcity(s.city);
					// 按照indexPreLabel回溯,找到最优解
					int path = s.indexPrevLabel;
					while (path >= 0) {// 这里和前面depot0的标签中indexPreLabel=-1相呼应
						newRoute.addcity(labels.get(path).city);
						path = labels.get(path).indexPrevLabel;
					}
					newRoute.switchpath();
					routes.add(newRoute);
					i++;
				}
			}

		}// end while
	}
}

  • 路径 route.java
package BranchAndPrice;

import java.util.ArrayList;

public class route implements Cloneable {
	public double cost, Q; // Q 表示 这条路径的使用次数的线性松弛版
	// first resource: cost (e.g. distance or strict travel time)

	public ArrayList<Integer> path;

	public route() { // non-param constructor
		this.path = new ArrayList<Integer>();
		this.cost = 0.0;
	}

	public route(int pathSize) {
		this.path = new ArrayList<Integer>(pathSize);
		this.cost = 0.0;
	}

	/*
	 * @update 2013. 6. 8
	 * @modify Geunho Kim
	 */
	// method for deep cloning // 深拷贝
	public route clone() throws CloneNotSupportedException {
		route route = (route) super.clone();// ?? 强制转型
		route.path = (ArrayList<Integer>) path.clone();
		return route;
	}

	public void removeCity(int city) {
		this.path.remove(Integer.valueOf(city));

	}

	public void addcity(int f_city, int city) {// 在f_city 之后,add city,
		int index = this.path.indexOf(f_city);
		this.path.add(index + 1, city);
	}

	public void addcity(int city) {
		this.path.add(city);
	}

	public void setcost(double c) {
		this.cost = c;
	}

	public double getcost() {
		return this.cost;
	}

	public void setQ(double a) {
		this.Q = a;
	}

	public double getQ() {
		return this.Q;
	}

	public ArrayList<Integer> getpath() {
		return this.path;
	}

	public void switchpath() {// 将path前后置换
		Integer swap;
		int nb = path.size() / 2;
		for (int i = 0; i < nb; i++) {
			swap = path.get(i);
			path.set(i, path.get(path.size() - 1 - i));// !!! not add
			path.set(path.size() - 1 - i, swap);
		}
	}
}
  • VRP问题的参数 paramsVRP.java
package BranchAndPrice;

// this class contains the inputs and methods to read the inputs
// for the Branch and Price CVRP with TW 
// ...I'm afraid that it is not pure OO code
// ...but it is not so bad

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;


public class paramsVRP {
	public int mvehic;
	public int nbclients;// number of clients
	public int capacity; // vehicle capacity
	public double[][] cost; // for the SPPRC subProblem
	public double[][] distBase; // 为dist存根,original distances for the Branch and Bound
	public double[][] dist; // distances that will be updated during the B&B before being used in the CG & SPPRC
	public double[][] ttime;// travel time
	public double[][] edges; // weight of each edge during branch and bound
	public double[] posx, posy, d, wval; // ?? what is wval
	public int[] a; // time windows: a=early, b=late, s=service
	public int[] b;
	public int[] s;
	public double verybig;
	public double speed; // vehicle's speed
	public double gap;
	public double maxlength;
	public boolean serviceInTW;
	String[] citieslab;

	public paramsVRP() {
		gap = 0.00000000001;
		serviceInTW = false;
		nbclients = 100;
		speed = 1;
		mvehic = 0;
		verybig = 1E10;
	}

	public void initParams(String inputPath) throws IOException {
		int i, j;

		try {
			/**
			 * @update 2013. 6. 12
			 * @modify Geunho Kim
			 *
			 *  for Hadoop distributed file system
			 */

			BufferedReader br = new BufferedReader(new FileReader(inputPath));

			String line = new String();

			// //
			// for local file system
			// BufferedReader br = new BufferedReader(new FileReader(inputPath));

			for (i = 0; i < 5; i++)
				line = br.readLine();

			String[] tokens = line.split("\\s+");
			mvehic = Integer.parseInt(tokens[1]);
			capacity = Integer.parseInt(tokens[2]);

			citieslab = new String[nbclients + 2];
			d = new double[nbclients + 2]; // demand
			a = new int[nbclients + 2]; // ready time
			b = new int[nbclients + 2];// due time
			s = new int[nbclients + 2];// service time
			posx = new double[nbclients + 2];
			posy = new double[nbclients + 2];
			distBase = new double[nbclients + 2][nbclients + 2];
			cost = new double[nbclients + 2][nbclients + 2];
			dist = new double[nbclients + 2][nbclients + 2];
			ttime = new double[nbclients + 2][nbclients + 2];

			for (i = 0; i < 4; i++)
				line = br.readLine();

			for (i = 0; i < nbclients + 1; i++) {
				line = br.readLine();
				//System.out.println(line);
				tokens = line.split("\\s+");
				citieslab[i] = tokens[1]; // customer number
				posx[i] = Double.parseDouble(tokens[2]); // x coordinate
				posy[i] = Double.parseDouble(tokens[3]); // y coordinate
				d[i] = Double.parseDouble(tokens[4]); // demand
				a[i] = Integer.parseInt(tokens[5]); // ready time
				b[i] = Integer.parseInt(tokens[6]); // due time
				s[i] = Integer.parseInt(tokens[7]); // service
				// check if the service should be done before due time
				if (serviceInTW) // ??
					b[i] -= s[i];
			}
			br.close();

			// second depot : copy of the first one for arrival
			citieslab[nbclients + 1] = citieslab[0];
			d[nbclients + 1] = 0.0;
			a[nbclients + 1] = a[0];
			b[nbclients + 1] = b[0];
			s[nbclients + 1] = 0;// !!
			posx[nbclients + 1] = posx[0];
			posy[nbclients + 1] = posy[0];

			// ---- distances
			double max;
			maxlength = 0.0;// 一个路径长度的上限,用于列生成算法
			for (i = 0; i < nbclients + 2; i++) {
				max = 0.0;
				for (j = 0; j < nbclients + 2; j++) {
					// dist[i][j]=Math.round(10*Math.sqrt((posx[i]-posx[j])*(posx[i]-posx[j])+(posy[i]-posy[j])*(posy[i]-posy[j])))/10.0;
					distBase[i][j] = ((int) (10 * Math
							.sqrt((posx[i] - posx[j]) * (posx[i] - posx[j])
									+ (posy[i] - posy[j]) * (posy[i] - posy[j])))) / 10.0; //只保留到小数点后一位
					// truncate to get the same results as in Solomon
					if (max < distBase[i][j]) max = distBase[i][j];
				}
				maxlength += max; // a route with a length longer than this is not
				// possible (we need it to check the feasibility of
				// the Column Gen sol.
			}

			// some edges are not available to pass in some direction
			for (i = 0; i < nbclients + 2; i++) {
				distBase[i][0] = verybig;// any node can't go back to Depot 0
				distBase[nbclients + 1][i] = verybig; // Depot nbclients+1 cannot visit any other node
				distBase[i][i] = verybig; // any node can't form a loop on its own
			}
			/*
			 * for(i = 0; i < 20; i++)
			 *   distBase[10][i] = verybig;
			 * for(i = 21; i < nbclients+2; i++)
			 *   distBase[10][i] = verybig;
			 * for(i = 0; i < 10; i++)
			 *   distBase[i][20] = verybig;
			 * for(i = 11; i < nbclients+2; i++)
			 *   distBase[i][20] = verybig;
			 * distBase[20][10] = verybig;
			 */
			for (i = 0; i < nbclients + 2; i++)
				for (j = 0; j < nbclients + 2; j++) {
					dist[i][j] = distBase[i][j];
				}


			// ---- time
			for (i = 0; i < nbclients + 2; i++)
				for (j = 0; j < nbclients + 2; j++)
					ttime[i][j] = distBase[i][j] / speed;

			// ------- cost
			for (j = 0; j < nbclients + 2; j++) {
				cost[0][j] = dist[0][j];
				cost[j][nbclients + 1] = dist[j][nbclients + 1];
			}
			// !!cost for the other edges are determined during column generation

		} catch (IOException e) {
			System.err.println("Error: " + e);
		}

		wval = new double[nbclients + 2];
		for (i = 1; i < nbclients + 2; i++) // ??
			wval[i] = 0.0;

		edges = new double[nbclients + 2][nbclients + 2];

	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/688331.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker网络之Network Namespace

Docker网络中相关的命令非常少&#xff0c;但需要掌握的底层原理却又非常多。 1.Network Namespace Docker网络底层原理是Linux的Network Namespace&#xff0c;所以说对于Linux Network Namespace的理解对Docker网络底层原理的理解就显得尤为重要了。 2.需求 通过手工的方式…

ICC2与INNOVUS命令对照表

ICC2与INNOVUS命令对照表 TargetICC2INNOVUS设置多CPU set_host_options -max_cores16 setMultiCpuUsage -localCpu 16 获得物体的属性 get_attribute

DSP,国产C2000横空出世,QX320F280049,替代TI 的 TMS320F280049,支持国产

一、特性参数 1、独立双核&#xff0c;32位CPU&#xff0c;单核主频400MHz 2、IEEE 754 单精度浮点单元 &#xff08;FPU&#xff09; 3、三角函数单元 &#xff08;TMU&#xff09; 4、1MB 的 FLASH &#xff08;ECC保护&#xff09; 5、1MB 的 SRAM &#xff08;ECC保护&…

全网最全,Selenium自动化测试POM模式总结(详细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 在UI自动化测试中…

Python+Selenium+Unittest 之selenium7--元素定位6-CSS定位1(定位所有、定位class、定位id、tag定位)

目录 一、CSS简介 二、 定位方式 三、实践操作 1、*&#xff08;定位所有元素&#xff09; 2、. &#xff08;定位class属性&#xff09; 3、#&#xff08;定位id属性&#xff09; 4、tag定位 一、CSS简介 CSS属于是一种计算机语言&#xff0c;主要是用来为结构化文档的外…

软件测试期末速成(背题家出列!)

文章目录 一、前言二、选择题&#xff08;15 X 2&#xff09;1、概述2、相关概念3、黑盒测试4、白盒测试5、单元测试6、集成测试7、系统测试8、自动化测试9、实用软件测试技术 三、判断题&#xff08;10 X 1’&#xff09;四、简答题&#xff08;4 X 5&#xff09;1、软件测试生…

一文学会Nginx做图片服务器

Nginx做图片服务器 前言&#xff1a; Nginx是一个高性能的HTTP和反向代理web服务器,以及负载均衡器。根据nginx是高性能的http服务器&#xff0c;因此可以用作图片服务器使用。 本案例是在docker安装nginx来操作的。 什么是Nginx? Nginx是一款高性能的Web服务器和反向代理服…

linux入门之浅谈shell及权限的概念

文章目录 目录 文章目录 一、shell命令以及运行原理 二、linux权限的概念 1.Linux权限管理 a.文件访问者的分类&#xff08;人&#xff09; b.文件类型和访问权限 1&#xff09;文件类型 2&#xff09;基本权限 3&#xff09;文件权限值的表示方法 4)文件访问权限的相…

docker快速部署oracle19c、oracle12c,测试环境问题复现demo快速搭建笔记

Oracle 19c测试环境快速搭建 安装 # 下载镜像 19.3.0.0.0 docker pull registry.cn-hangzhou.aliyuncs.com/laowu/oracle:19c # 创建文件 mkdir -p /mymount/oracle19c/oradata # 授权&#xff0c;不授权会导致后面安装失败 chmod 777 /mymount/oracle19c/oradatadocker run …

01背包思路解析+代码

01背包 题目链接&#xff1a;01背包 思路&#xff1a;题目要求是获取背包能装的最大重量。一个物品有体积和重量两个属性。而当我们判断一个物品是否要放进背包&#xff0c;第一取决于他的体积是否足以放进背包&#xff0c;第二取决于他的重量是否足以让我们取出已经放入的一部…

buuctf 你有没有好好看网课? 解析

打开文件得到两个压缩包&#xff0c;第一个压缩包flag2需要密码&#xff0c;第二个压缩包flag3打开后在备注可以获得提示 使用arc爆破&#xff0c;得到6位数字密码 解压压缩包得到一个视频和文档 文档内容包含6个数字&#xff0c;结合视频猜测是关键信息藏在这两个时间节点上 …

XSS注入——DOM型XSS

DOM型xss XSS根据恶意脚本的传递方式可以分为3种&#xff0c;分别为反射型、存储型、DOM型&#xff0c;前面两种恶意脚本都会经过服务器端然后返回给客户端&#xff0c;相对DOM型来说比较好检测与防御&#xff0c;而DOM型不用将恶意脚本传输到服务器在返回客户端&#xff0c;这…

如何优化Nginx服务进程(详细教程)

目录 一、了解Nginx服务配置内容 ① 外框架 ② 内框架 ③ 三个主模块 二、Nginx服务进程 访问信息的组成 Web服务的监听配置 LNMP架构 三、Nginx优化 隐藏版本号 可以查询指定地址的服务信息 更改配置文件内容 检查语法错误 重启服务 再次查看版本号是否隐藏 自…

【qiankun】前端微服务踩坑记录-长期更新

目录 前言 1.Cannot GET /cooperation/board 场景&#xff1a; 分析 解决 2.Invalid options in vue.config.js:"css.requireModuleExtension" is not allowed 原因 解决 3.less版本升级导致除法写法未转换 原因 解决 4.主子应用样式隔离 场景 解决 5…

Java进阶必读书单及博客

java基础 Java核心技术 卷I:开发基础&#xff08;原书第12版&#xff09; Java核心技术 卷II:高级特性&#xff08;原书第12版&#xff09; JVM 《深入理解Java虚拟机&#xff08;第3版&#xff09;》 并发 《Java并发编程实战》 《Java并发编程的艺术》 数据库 《MySQL技术…

win下安装Nginx

安装Nginx 前言 本文演示win11下安装Nginx-1.24.0。本文旨在记录安装流程以及梳理安装配置过程中的一些容易出错的地方。 目录 文章目录 前言目录下载Nginx安装包配置环境变量配置Nginx设置报错日志路径设置Nginx的启动端口号 启动Nginx 下载Nginx安装包 前往Nginx官方下载…

FineReport学习1

聚合报表是指将多个子报表数据进行集中汇总、分析和呈现的报表&#xff0c;通常用于展示公司的整体数据情况。聚合报表可以帮助管理人员和决策者更全面、准确地了解公司在不同维度上的业务情况&#xff0c;便于对公司业务进行分析和决策。 决策报表则是指根据决策需求构建的针…

性能测试——银行核心业务系统性能测试

目录 前言&#xff1a; 测试内容 测试方法 注意事项 总结&#xff1a; 前言&#xff1a; 本文讨论的是基于字符终端型的银行核心业务系统。银行核心业务系统由于其复杂的业务流程&#xff0c;以及特殊的终端字符形式&#xff0c;与一般的B/S结构、C/S结构系统有较大的差异&am…

Vue3新特性全预览

目录 自定义Hook函数 介绍 示例 toRef和toRefs 介绍 代码示例 shallowReactive和shallowRef(不常用只做了解) readonly与shallowReadonly(不常用只做了解) toRaw与markRaw(不太常用只做了解) provide与inject 介绍 代码示例 ​编辑 响应式数据的判断 Composition Api的…

QML Canvas 元素(渐变和阴影)

作者: 一去、二三里 个人微信号: iwaleon 微信公众号: 高效程序员 经过前面的 Canvas 学习,我们可以很容易地使用 strokeStyle 和 fillStyle 来设置图形的边框色和填充色,例如:“green”、“black” 等。其实除了使用纯色之外,我们还可以使用一些渐变色,如果你想让图形…