【技术选型】Redis的几种集群方案、及优缺点对比

news2025/1/9 16:23:25

文章目录

  • 背景
  • 一、主从模式
  • 二、哨兵模式
  • 三、Redis Cluster
  • 四、各大厂的Redis集群方案
    • 客户端分片
    • 代理分片
    • Codis
  • 五、Redis集群方案解决方案
  • 六、Redis集群方案原理
  • 总结

背景

在服务开发中,单机都会存在单点故障的问题,及服务部署在一台服务器上,一旦服务器宕机服务就不可用,所以为了让服务高可用,分布式服务就出现了,将同一服务部署到多台机器上,即使其中几台服务器宕机,只要有一台服务器可用服务就可用。

redis也是一样,为了解决单机故障引入了主从模式,但主从模式存在一个问题:master节点故障后服务,需要人为的手动将slave节点切换成为maser节点后服务才恢复。redis为解决这一问题又引入了哨兵模式,哨兵模式能在master节点故障后能自动将salve节点提升成master节点,不需要人工干预操作就能恢复服务可用。但是主从模式、哨兵模式都没有达到真正的数据sharding存储,每个redis实例中存储的都是全量数据,所以redis cluster就诞生了,实现了真正的数据分片存储。但是由于redis cluster发布得比较晚(2015年才发布正式版 ),各大厂等不及了,陆陆续续开发了自己的redis数据分片集群模式,比如:Twemproxy、Codis等。

一、主从模式

redis单节点虽然有通过RDB和AOF持久化机制能将数据持久化到硬盘上,但数据是存储在一台服务器上的,如果服务器出现硬盘故障等问题,会导致数据不可用,而且读写无法分离,读写都在同一台服务器上,请求量大时会出现I/O瓶颈。

为了避免单点故障 和 读写不分离,Redis 提供了复制(replication)功能实现master数据库中的数据更新后,会自动将更新的数据同步到其他slave数据库上。

在这里插入图片描述

如上redis主从结构特点:一个master可以有多个salve节点;salve节点可以有slave节点,从节点是级联结构。

  • 主从模式优缺点

    1. 优点: 主从结构具有读写分离,提高效率、数据备份,提供多个副本等优点。
    2. 不足: 最大的不足就是主从模式不具备自动容错和恢复功能,主节点故障,集群则无法进行工作,可用性比较低,从节点升主节点需要人工手动干预。

#普通的主从模式,当主数据库崩溃时,需要手动切换从数据库成为主数据库:
1.在从数据库中使用SLAVE NO ONE命令将从数据库提升成主数据继续服务。
2.启动之前崩溃的主数据库,然后使用SLAVEOF命令将其设置成新的主数据库的从数据库,即可同步数据。

更多参考我之前写的:Redis主从复制

二、哨兵模式

第一种主从同步/复制的模式,当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可用,这时候就需要哨兵模式登场了。哨兵模式是从Redis的2.6版本开始提供的,但是当时这个版本的模式是不稳定的,直到Redis的2.8版本以后,这个哨兵模式才稳定下来。

哨兵模式核心还是主从复制,只不过在相对于主从模式在主节点宕机导致不可写的情况下,多了一个竞选机制:从所有的从节点竞选出新的主节点。竞选机制的实现,是依赖于在系统中启动一个sentinel进程。

在这里插入图片描述

如上图,哨兵本身也有单点故障的问题,所以在一个一主多从的Redis系统中,可以使用多个哨兵进行监控,哨兵不仅会监控主数据库和从数据库,哨兵之间也会相互监控。每一个哨兵都是一个独立的进程,作为进程,它会独立运行。

在这里插入图片描述

  1. 哨兵模式的作用:

    • 监控所有服务器是否正常运行:通过发送命令返回监控服务器的运行状态,处理监控主服务器、从服务器外,哨兵之间也相互监控。

    • 故障切换:当哨兵监测到master宕机,会自动将slave切换成master,然后通过发布订阅模式通知其他的从服务器,修改配置文件,让它们切换master。同时那台有问题的旧主也会变为新主的从,也就是说当旧的主即使恢复时,并不会恢复原来的主身份,而是作为新主的一个从。

  2. 哨兵实现原理
    哨兵在启动进程时,会读取配置文件的内容,通过如下的配置找出需要监控的主数据库:

    sentinel monitor master-name ip port quorum
    #master-name是主数据库的名字
    #ip和port 是当前主数据库地址和端口号
    #quorum表示在执行故障切换操作前,需要多少哨兵节点同意。
    

    这里之所以只需要连接主节点,是因为通过主节点的info命令,获取从节点信息,从而和从节点也建立连接,同时也能通过主节点的info信息知道新增从节点的信息。

    一个哨兵节点可以监控多个主节点,但是并不提倡这么做,因为当哨兵节点崩溃时,同时有多个集群切换会发生故障。 哨兵启动后,会与主数据库建立两条连接。

    1.订阅主数据库_sentinel_:hello频道以获取同样监控该数据库的哨兵节点信息
    2.定期向主数据库发送info命令,获取主数据库本身的信息。
    

    跟主数据库建立连接后会定时执行以下三个操作:

    • 每隔10s向master和 slave发送info命令。作用是获取当前数据库信息,比如发现新增从节点时,会建立连接,并加入到监控列表中,当主从数据库的角色发生变化进行信息更新。

    • 每隔2s向主数据里和从数据库的_sentinel_:hello频道发送自己的信息。作用是将自己的监控数据和哨兵分享。每个哨兵会订阅数据库的_sentinel:hello频道,当其他哨兵收到消息后,会判断该哨兵是不是新的哨兵,如果是则将其加入哨兵列表,并建立连接。

    • 每隔1s向所有主从节点和所有哨兵节点发送ping命令,作用是监控节点是否存活。

  3. 主观下线和客观下线
    哨兵节点发送ping命令时,当超过一定时间(down-after-millisecond)后,如果节点未回复,则哨兵认为主观下线。主观下线表示当前哨兵认为该节点已经下面,如果该节点为主数据库,哨兵会进一步判断是够需要对其进行故障切换,这时候就要发送命令(SENTINEL is-master-down-by-addr)询问其他哨兵节点是否认为该主节点是主观下线,当达到指定数量(quorum)时,哨兵就会认为是客观下线。

    当主节点客观下线时就需要进行主从切换,主从切换的步骤为:

    (1)选出领头哨兵。
    (2)领头哨兵所有的slave选出优先级最高的从数据库。优先级可以通过slave-priority选项设置。
    (3)如果优先级相同,则从复制的命令偏移量越大(即复制同步数据越多,数据越新),越优先。
    (4)如果以上条件都一样,则选择run ID较小的从数据库。
    选出一个从数据库后,哨兵发送slave no one命令升级为主数据库,并发送slaveof命令将其他从节点的主数据库设置为新的主数据库。

  4. 哨兵模式优缺点

#1.优点
    哨兵模式是基于主从模式的,解决可主从模式中master故障不可以自动切换故障的问题。
#2.不足-问题
(1)是一种中心化的集群实现方案:始终只有一个Redis主机来接收和处理写请求,写操作受单机瓶颈影响。
(2)集群里所有节点保存的都是全量数据,浪费内存空间,没有真正实现分布式存储。数据量过大时,主从同步严重影响master的性能。
(3Redis主机宕机后,哨兵模式正在投票选举的情况之外,因为投票选举结束之前,谁也不知道主机和从机是谁,此时Redis也会开启保护机制,禁止写操作,直到选举出了新的Redis主机。

主从模式或哨兵模式每个节点存储的数据都是全量的数据,数据量过大时,就需要对存储的数据进行分片后存储到多个redis实例上。此时就要用到Redis Sharding技术。

更多可参考之前写的文章:Redis哨兵(Sentinel)模式

三、Redis Cluster

注:Cluster 读音/ˈklʌstə(r)/

Redis 的哨兵模式虽然已经可以实现高可用,读写分离 ,但是存在几个方面的不足:

  • 哨兵模式下每台 Redis 服务器都存储相同的数据,很浪费内存空间;数据量太大,主从同步时严重影响了master性能。

  • 哨兵模式是中心化的集群实现方案,每个从机和主机的耦合度很高,master宕机到salve选举master恢复期间服务不可用。

  • 哨兵模式始终只有一个Redis主机来接收和处理写请求,写操作还是受单机瓶颈影响,没有实现真正的分布式架构。

redis在3.0上加入了 Cluster 集群模式,实现了 Redis 的分布式存储,也就是说每台 Redis 节点上存储不同的数据。cluster模式为了解决单机Redis容量有限的问题,将数据按一定的规则分配到多台机器,内存/QPS不受限于单机,可受益于分布式集群高扩展性。Redis Cluster是一种服务器Sharding技术(分片和路由都是在服务端实现),采用多主多从,每一个分区都是由一个Redis主机和多个从机组成,片区和片区之间是相互平行的。Redis Cluster集群采用了P2P的模式,完全去中心化。

在这里插入图片描述

如上图,官方推荐,集群部署至少要 3 台以上的master节点,最好使用 3 主 3 从六个节点的模式。Redis Cluster集群具有如下几个特点:

  • 集群完全去中心化,采用多主多从;所有的redis节点彼此互联(PING-PONG机制),内部使用二进制协议优化传输速度和带宽。

  • 客户端与 Redis 节点直连,不需要中间代理层。客户端不需要连接集群所有节点,连接集群中任何一个可用节点即可。

  • 每一个分区都是由一个Redis主机和多个从机组成,分片和分片之间是相互平行的。

  • 每一个master节点负责维护一部分槽,以及槽所映射的键值数据;集群中每个节点都有全量的槽信息,通过槽每个node都知道具体数据存储到哪个node上。

redis cluster主要是针对海量数据+高并发+高可用的场景,海量数据,如果你的数据量很大,那么建议就用redis cluster,数据量不是很大时,使用sentinel就够了。redis cluster的性能和高可用性均优于哨兵模式。

Redis Cluster采用虚拟哈希槽分区而非一致性hash算法,预先分配一些卡槽,所有的键根据哈希函数映射到这些槽内,每一个分区内的master节点负责维护一部分槽以及槽所映射的键值数据。关于Redis Cluster的详细实现原理请参考:Redis Cluster数据分片实现原理。

更多可参考之前写的文章:浅谈Redis-集群(Cluster)

四、各大厂的Redis集群方案

Redis在3.0版本前只支持单实例模式,虽然Redis的开发者Antirez早在博客上就提出在Redis 3.0版本中加入集群的功能,但3.0版本等到2015年才发布正式版。各大企业等不急了,在3.0版本还没发布前为了解决Redis的存储瓶颈,纷纷推出了各自的Redis集群方案。这些方案的核心思想是把数据分片(sharding)存储在多个Redis实例中,每一片就是一个Redis实例。

客户端分片

客户端分片是把分片的逻辑放在Redis客户端实现,(比如:jedis已支持Redis Sharding功能,即ShardedJedis),通过Redis客户端预先定义好的路由规则(使用一致性哈希),把对Key的访问转发到不同的Redis实例中,查询数据时把返回结果汇集。这种方案的模式如图所示。

在这里插入图片描述

客户端分片的优缺点:

  • 优点:客户端sharding技术使用hash一致性算法分片的好处是所有的逻辑都是可控的,不依赖于第三方分布式中间件。服务端的Redis实例彼此独立,相互无关联,每个Redis实例像单服务器一样运行,非常容易线性扩展,系统的灵活性很强。开发人员清楚怎么实现分片、路由的规则,不用担心踩坑。

    1. 一致性哈希算法:
      是分布式系统中常用的算法。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,
      如mod(key,d),key是数据的key,d是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了。
      一致性哈希算法解决了普通余数Hash算法伸缩性差的问题,可以保证在上线、下线服务器的情况下尽量有多的请求命中原来路由到的服务器。

    2. 实现方式:一致性hash算法,比如MURMUR_HASH散列算法、ketamahash算法
      比如Jedis的Redis Sharding实现,采用一致性哈希算法(consistent hashing),将key和节点name同时hashing,然后进行映射匹配,采用的算法是MURMUR_HASH。
      采用一致性哈希而不是采用简单类似哈希求模映射的主要原因是当增加或减少节点时,不会产生由于重新匹配造成的rehashing。一致性哈希只影响相邻节点key分配,影响量小。

  • 不足:

    • 这是一种静态的分片方案,需要增加或者减少Redis实例的数量,需要手工调整分片的程序。

    • 运维成本比较高,集群的数据出了任何问题都需要运维人员和开发人员一起合作,减缓了解决问题的速度,增加了跨部门沟通的成本。

    • 在不同的客户端程序中,维护相同的路由分片逻辑成本巨大。比如:java项目、PHP项目里共用一套Redis集群,路由分片逻辑分别需要写两套一样的逻辑,以后维护也是两套。

客户端分片有一个最大的问题就是,服务端Redis实例群拓扑结构有变化时,每个客户端都需要更新调整。如果能把客户端分片模块单独拎出来,形成一个单独的模块(中间件),作为客户端 和 服务端连接的桥梁就能解决这个问题了,此时代理分片就出现了。

代理分片

redis代理分片用得最多的就是Twemproxy,由Twitter开源的Redis代理,其基本原理是:通过中间件的形式,Redis客户端把请求发送到Twemproxy,Twemproxy根据路由规则发送到正确的Redis实例,最后Twemproxy把结果汇集返回给客户端。

Twemproxy通过引入一个代理层,将多个Redis实例进行统一管理,使Redis客户端只需要在Twemproxy上进行操作,而不需要关心后面有多少个Redis实例,从而实现了Redis集群。

在这里插入图片描述

  • Twemproxy的优点:

    • 客户端像连接Redis实例一样连接Twemproxy,不需要改任何的代码逻辑。

    • 支持无效Redis实例的自动删除。

    • Twemproxy与Redis实例保持连接,减少了客户端与Redis实例的连接数。

  • Twemproxy的不足:

    • 由于Redis客户端的每个请求都经过Twemproxy代理才能到达Redis服务器,这个过程中会产生性能损失。

    • 没有友好的监控管理后台界面,不利于运维监控。

    • Twemproxy最大的痛点在于,无法平滑地扩容/缩容。对于运维人员来说,当因为业务需要增加Redis实例时工作量非常大。

Twemproxy作为最被广泛使用、最久经考验、稳定性最高的Redis代理,在业界被广泛使用。

Codis

Twemproxy不能平滑增加Redis实例的问题带来了很大的不便,于是豌豆荚自主研发了Codis,一个支持平滑增加Redis实例的Redis代理软件,其基于Go和C语言开发,并于2014年11月在GitHub上开源 codis开源地址 。

在这里插入图片描述

在Codis的架构图中,Codis引入了Redis Server Group,其通过指定一个主CodisRedis和一个或多个从CodisRedis,实现了Redis集群的高可用。当一个主CodisRedis挂掉时,Codis不会自动把一个从CodisRedis提升为主CodisRedis,这涉及数据的一致性问题(Redis本身的数据同步是采用主从异步复制,当数据在主CodisRedis写入成功时,从CodisRedis是否已读入这个数据是没法保证的),需要管理员在管理界面上手动把从CodisRedis提升为主CodisRedis。

如果手动处理觉得麻烦,豌豆荚也提供了一个工具Codis-ha,这个工具会在检测到主CodisRedis挂掉的时候将其下线并提升一个从CodisRedis为主CodisRedis。

Codis中采用预分片的形式,启动的时候就创建了1024个slot,1个slot相当于1个箱子,每个箱子有固定的编号,范围是11024。slot这个箱子用作存放Key,至于Key存放到哪个箱子,可以通过算法“crc32(key)%1024”获得一个数字,这个数字的范围一定是11024之间,Key就放到这个数字对应的slot。例如,如果某个Key通过算法“crc32(key)%1024”得到的数字是5,就放到编码为5的slot(箱子)。1个slot只能放1个Redis Server Group,不能把1个slot放到多个Redis Server Group中。1个Redis Server Group最少可以存放1个slot,最大可以存放1024个slot。因此,Codis中最多可以指定1024个Redis Server Group。

Codis最大的优势在于支持平滑增加(减少)Redis Server Group(Redis实例),能安全、透明地迁移数据,这也是Codis 有别于Twemproxy等静态分布式 Redis 解决方案的地方。Codis增加了Redis Server Group后,就牵涉到slot的迁移问题。例如,系统有两个Redis Server Group,Redis Server Group和slot的对应关系如下。

Redis Server Groupslot
11~500
2501~1024

当增加了一个Redis Server Group,slot就要重新分配了。Codis分配slot有两种方法:

  • 第一种:通过Codis管理工具Codisconfig手动重新分配,指定每个Redis Server Group所对应的slot的范围,例如:可以指定Redis Server Group和slot的新的对应关系如下。
Redis Server Groupslot
11~500
2501~700
3701~1024
  • 第二种:通过Codis管理工具Codisconfig的rebalance功能,会自动根据每个Redis Server Group的内存对slot进行迁移,以实现数据的均衡。

五、Redis集群方案解决方案

为了解决Redis集群方案存在的一些问题,我们可以采取以下措施:

部署和管理自动化:可以使用自动化工具来部署和管理Redis集群方案,例如Redis官方提供的Redis-trib或第三方的工具如Redis Sentinel Manager。
数据备份和恢复:可以采取数据备份和恢复的措施来保证数据的可靠性,例如使用Redis自带的RDB和AOF备份机制,或者使用第三方的备份工具如Redis Backup和Redis Cloud Backup等。
改进性能:可以采用一些技术手段来改进Redis集群方案的性能,例如使用客户端分片、增加节点数、优化哈希算法、使用持久化存储等。
使用其他解决方案:如果Redis集群方案无法满足业务需求,可以考虑使用其他解决方案,例如Redis Cluster Proxy、Twemproxy、Codis等。

六、Redis集群方案原理

Redis集群方案使用了分片(sharding)技术,将数据分散存储到多个节点上。Redis集群支持多个节点构成一个集群,每个节点都可以保存一部分数据,客户端可以通过任何一个节点来访问整个集群。Redis集群方案使用哈希算法来将数据分散到不同的节点上。具体来说,它将key的哈希值作为分片的依据,通过对节点数量取模来计算数据应该存储到哪个节点上。Redis集群使用虚拟槽(virtual slot)的概念来实现分片,一个节点可以拥有多个虚拟槽,一个槽对应一个key的哈希值范围。当一个节点负责一个或多个虚拟槽时,它就负责存储这些key。
为了保证高可用性,Redis集群采用了主从复制(master-slave replication)的方式。每个节点都可以有一个或多个从节点,当主节点宕机时,从节点会自动升级为主节点,继续提供服务。Redis集群还使用了哨兵(sentinel)机制,通过监控节点的状态来实现自动故障转移。当一个节点宕机时,哨兵会自动将它从集群中移除,并选择一个新的节点作为从节点,使得整个集群仍然保持正常运行。

总结

Redis集群方案是一种高可用、可扩展的解决方案,通过分片和主从复制机制来实现数据的分布式存储和故障转移。但是,Redis集群方案也存在一些缺点,需要在部署和管理、数据可靠性、性能和事务支持等方面进行优化和改进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/685914.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GCP学习笔记(二)——大数据和机器学习

文章目录 一、数据读取和处理1.Pub/Sub代码实践PublishingSubscribing 2. Dataflow使用Python搭建Pipeline 3. Dataproc4. Cloud Data Fusion5. 其他工具Cloud Composer (Apache Airflow)Cloud Scheduler 二、可视化与分析1. Looker2. Looker Studio3. B…

【数据结构与算法C++实现】2、二分查找与简单递归

原视频为左程云的B站教学 文章目录 1 二分法1.1 在有序数组中查找特定元素1.2 在一个有序数组中查找>某个数的最左侧的位置1.3 在一个有序数组中查找<某个数最右侧位置1.4 局部最小值问题&#xff08;无序数组使用二分法的案例&#xff09; 2 简单的递归思想 1 二分法 …

在AI热潮中,过早的卖掉Datadog股票是个非常错误的决定

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 Datadog股价 Datadog&#xff08;DDOG&#xff09;目前的股价比其历史高点低了50%左右&#xff0c;比近期低点高了50%左右。 猛兽财经上次关注Datadog是在4月份&#xff0c;当时由于该股的增长前景已经恶化&#xff0c;所以…

windows电脑hbuilderx打包iOS app及上架app store教程

ios应用&#xff0c;无法像安卓应用一样&#xff0c;上传到自己的服务器让互联网用户下载进行安装&#xff0c;所以需要将生成的app上传到app store&#xff0c;然后用户到app store安装app。 由于官网的教程是使用mac电脑生成证书和上架的&#xff0c;但是很多使用hbuilderx打…

实践指南 | 风控引擎快速接入不同数据源的操作说明

随着互联网垂直电商、消费金融等领域的快速崛起&#xff0c;用户及互联网、金融平台受到欺诈的风险也急剧增加。网络黑灰产已形成完整的、成熟的产业链&#xff0c;每年千亿级别的投入规模&#xff0c;超过1000万的“从业者”&#xff0c;其专业度也高于大多数技术人员&#xf…

Templates 虽然工具将近被淘汰,但依然会有一些场景会被使用-eclipse 格式化注释

Templates 是一款-eclipse 格式化注释模板。虽然工具将近被淘汰&#xff0c;但依然会有一些场景会被使用&#xff0c;今天就来分享一下自己用过的一款&#xff0c;已经去掉不常用的&#xff0c;保留必要的模板内容。 设置方法如下&#xff1a; 设置Code Templates&#xff0c…

Java-定时任务

文章目录 补充&#xff1a;cron表达式基本知识方式一&#xff1a;使用sleep方法方式二&#xff1a;JDK Timer和TimerTask方式三&#xff1a;JDK ScheduledExecutorService方式四&#xff1a; Spring Task 中 的 Scheduler方法五、Quartz框架方式六&#xff1a;XXL-JOB将xxl-job…

canvas实现简易画板

效果图如下&#xff1a; 实现功能&#xff1a; 1、改变画笔粗细 2、保存签名实现下载功能 3、使用橡皮擦功能 4、清空画布 5、改变画笔颜色 实现代码如下 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta …

ChatGPT新功能曝光:可记住用户信息、上传文件和工作区

&#x1f989; AI新闻 &#x1f680; ChatGPT新功能曝光&#xff1a;可记住用户信息、上传文件和工作区 摘要&#xff1a;一张神秘截图曝光了ChatGPT新功能&#xff0c;包括可记住用户信息的"My profile"、上传和管理文件的"My files"以及可以让AI使用不…

从Wi-Fi,蓝牙,到4G,5G,到卫星网络,频谱共享已无处不在

在智能手机像牙刷一样普及的今天&#xff0c;频谱共享&#xff0c;成为了近些年通信界的一个热词儿。频谱因为通信的重要而变得越发重要&#xff0c;又因为频谱是一种稀缺资产&#xff0c;而使用需求又在日益飞速地增长&#xff0c;所以成为重中之重。智能手机、物联网、军事和…

【QT】枚举常用宏到底有什么作用?(Q_ENUM,Q_FLAG,Q_DECLARE_FLAGS,Q_DECLARE_OPERATORS_FOR_FLAGS)

目录 1. Q_ENUM宏 与 QMetaEnum类1.1 Q_ENUM宏的作用1.2 使用Q_ENUM注意的问题1.3 在写有关枚举的代码时&#xff0c;我们可能遇到这种情况&#xff1a;需要用到枚举的字符串&#xff0c;该怎么办&#xff1f;1.4 下面通过一段简单的代码来说明Q_ENUM的作用 2. Q_FLAG宏2.1 Q_F…

satellite: 利用TLE动态计算并实时显示多颗卫星的位置及轨迹

本示例的目的是介绍演示如何在vue+satellite项目中利用两行根数动态地计算,并显示多个卫星的位置及轨迹。每秒钟更新一下卫星的位置和角度,加载当前时间到固定时间(如720分钟后)的一段轨迹。 直接复制下面的 vue+openlayers源示例代码,操作2分钟即可运行实现效果 文章目…

DDD领域驱动设计基本理解

DDD是一种软件设计思想和方法论&#xff0c;以领域为核心构建软件设计体系&#xff0c;将业务模型抽象成领域模型进行拆解和封装。本文简要介绍DDD的基本概念和常用的分层设计架构&#xff0c;并结合业务场景进行领域驱动设计的实战分析&#xff0c;以加深理解。 1、DDD领域驱动…

opencv通过轮廓去除虚线

思路&#xff1a; 将虚线膨胀为实线&#xff0c;通过高度和宽度找到轮廓&#xff0c;再将轮廓内的面积涂白色 img cv2.imread(imagePath) gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray_test gray.copy() binary_test cv2.adaptiveThreshold(clean_gray(gray_test),25…

做项目,最难搞定的不是甲方爸爸...

早上好&#xff0c;我是老原。 前几天和一个老朋友吃饭的时候&#xff0c;他和我吐槽他上个月做的一个项目&#xff0c;实在太累了&#xff0c;几乎是没日没夜地赶进度&#xff0c;身体都快垮了。 我问他既然时间来不及&#xff0c;为什么不前期就和客户沟通好。 他说其实客…

uni-app 的使用体验总结

框架简介 uni-app 是一个使用 Vue.js (opens new window)开发所有前端应用的框架&#xff0c;开发者编写一套代码&#xff0c;可发布到iOS、Android、Web&#xff08;响应式&#xff09;、以及各种小程序&#xff08;微信/支付宝/百度/头条/飞书/QQ/快手/钉钉/淘宝&#xff09;…

【自然语言处理】COLD:中文攻击性言论检测数据集

COLD&#xff1a;A Benchmark for Chinese Offensive Language Detection 文章目录 COLD&#xff1a;A Benchmark for Chinese Offensive Language Detection1 论文出处2 背景2.1 背景介绍2.2 针对问题2.3 创新点 3 数据集构建3.1 数据源3.2 效率改进3.3 数据集分析 4 实验设计…

驱动开发:内核物理内存寻址读写

在某些时候我们需要读写的进程可能存在虚拟内存保护机制&#xff0c;在该机制下用户的CR3以及MDL读写将直接失效&#xff0c;从而导致无法读取到正确的数据&#xff0c;本章我们将继续研究如何实现物理级别的寻址读写。 首先&#xff0c;驱动中的物理页读写是指在驱动中直接读…

LiveGBS流媒体平台GB/T28181功能-海康大华宇视华为NVR等4G摄像头自带物联网卡注册国标平台后看不到设备的时候如何排查及抓包

LiveGBS流媒体平台GB/T28181功能-海康大华宇视华为NVR等4G摄像头自带物联网卡注册国标平台后看不到设备的时候如何排查及抓包 1、设备注册后查看不到1.1、是否是4G|5G摄像头1.2、关闭萤石云1.3、防火墙排查1.4、端口排查1.5、IP地址排查1.6、设备TCP/IP配置排查1.7、设备多网卡…

【Nexus】Maven从Nexus中下载jar包

目录 一、前言二、配置Apache Maven1、在Maven的settings.xml中添加一个镜像配置&#xff0c;并覆盖中央仓库的默认配置 二、创建Maven项目&#xff0c;配置pom文件拉取Nexus中的jar包1、确定配置的Maven的settings.xml是否是上一步修改的settings.xml文件&#xff0c;以及repo…