架构设计第十一讲:架构之高并发:限流

news2024/11/20 3:35:52

架构设计第十一讲:架构之高并发:限流

每个系统都有服务的上线,所以当流量超过服务极限能力时,系统可能会出现卡死、崩溃的情况,所以就有了降级和限流。限流其实就是:当高并发或者瞬时高并发时,为了保证系统的稳定性、可用性,系统以牺牲部分请求为代价或者延迟处理请求为代价,保证系统整体服务可用。

文章目录

  • 架构设计第十一讲:架构之高并发:限流
    • 1、限流简介
      • 1.1、算法
      • 1.2、分类
        • 1、应用级 - 单机
        • 2、分布式
    • 2、方案一:令牌桶方式(Token Bucket)
      • 2.1、举例:Guava RateLimiter - 平滑突发限流(SmoothBursty)
      • 2.2、举例:Guava RateLimiter - SmoothWarmingUp
    • 3、方案二:漏桶方式
      • 3.1、令牌桶和漏桶对比
    • 4、方案三:计数器方式
      • 4.1、采用AtomicInteger
      • 4.2、采用令牌Semaphore
      • 4.3、采用ThreadPoolExecutor java线程池
    • 5、压力测试
    • 6、参考文章

1、限流简介

每个系统都有服务的上线,所以当流量超过服务极限能力时,系统可能会出现卡死、崩溃的情况,所以就有了降级和限流。限流其实就是:当高并发或者瞬时高并发时,为了保证系统的稳定性、可用性,系统以牺牲部分请求为代价或者延迟处理请求为代价,保证系统整体服务可用。

1.1、算法

令牌桶(Token Bucket)、漏桶(leaky bucket)和 计数器算法 是最常用的三种限流的算法。

1.2、分类

1、应用级 - 单机

应用级限流方式只是单应用内的请求限流,不能进行全局限流。

  1. 限流总资源数
  2. 限流总并发/连接/请求数
  3. 限流某个接口的总并发/请求数
  4. 限流某个接口的时间窗请求数
  5. 平滑限流某个接口的请求数
  6. Guava RateLimiter

2、分布式

我们需要分布式限流接入层限流来进行全局限流。

  1. redis+lua实现中的lua脚本
  2. 使用Nginx+Lua实现的Lua脚本
  3. 使用 OpenResty 开源的限流方案
  4. 限流框架,比如Sentinel实现降级限流熔断

2、方案一:令牌桶方式(Token Bucket)

令牌桶算法是网络流量整形(Traffic Shaping)和速率限制(Rate Limiting)中最常使用的一种算法。先有一个木桶,系统按照固定速度,往桶里加入Token,如果桶已经满了就不再添加。当有请求到来时,会各自拿走一个Token,取到Token 才能继续进行请求处理,没有Token 就拒绝服务。

img

这里如果一段时间没有请求时,桶内就会积累一些Token,下次一旦有突发流量,只要Token足够,也能一次处理,所以令牌桶算法的特点是允许突发流量

2.1、举例:Guava RateLimiter - 平滑突发限流(SmoothBursty)

Guava RateLimiter提供了令牌桶算法实现:平滑突发限流(SmoothBursty)和平滑预热限流(SmoothWarmingUp)实现

  • Case 1
RateLimiter limiter = RateLimiter.create(5);
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());

// 将得到类似如下的输出:
0.0
0.198239
0.196083
0.200609
0.199599
0.19961

1、RateLimiter.create(5)表示桶容量为5且每秒新增5个令牌,即每隔200毫秒新增一个令牌;

2、limiter.acquire()表示消费一个令牌,如果当前桶中有足够令牌则成功(返回值为0),如果桶中没有令牌则暂停一段时间,比如发令牌间隔是200毫秒,则等待200毫秒后再去消费令牌(如上测试用例返回的为0.198239,差不多等待了200毫秒桶中才有令牌可用),这种实现将突发请求速率平均为了固定请求速率。如果结果不想等待可以采用tryAcquire立刻返回!

  • Case 2 - RateLimiter的突发情况处理:
RateLimiter limiter = RateLimiter.create(5);
System.out.println(limiter.acquire(5));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1))

// 将得到类似如下的输出:
0.0
0.98745
0.183553
0.199909

limiter.acquire(5)表示桶的容量为5且每秒新增5个令牌,令牌桶算法允许一定程度的突发,所以可以一次性消费5个令牌,但接下来的limiter.acquire(1)将等待差不多1秒桶中才能有令牌,且接下来的请求也整形为固定速率了。

  • Case 3 - RateLimiter的突发情况处理:
RateLimiter limiter = RateLimiter.create(5);
System.out.println(limiter.acquire(10));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));

// 将得到类似如下的输出:
0.0
1.997428
0.192273
0.200616

同上边的例子类似,第一秒突发了10个请求,令牌桶算法也允许了这种突发(允许消费未来的令牌),但接下来的limiter.acquire(1)将等待差不多2秒桶中才能有令牌,且接下来的请求也整形为固定速率了。

  • Case 4
RateLimiter limiter = RateLimiter.create(2);
System.out.println(limiter.acquire());
Thread.sleep(2000L);
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());

// 将得到类似如下的输出:
0.0
0.0
0.0
0.0
0.499876
0.495799

1、创建了一个桶容量为2且每秒新增2个令牌;
2、首先调用limiter.acquire()消费一个令牌,此时令牌桶可以满足(返回值为0);
3、然后线程暂停2秒,接下来的两个limiter.acquire()都能消费到令牌,第三个limiter.acquire()也同样消费到了令牌,到第四个时就需要等待500毫秒了。

此处可以看到我们设置的桶容量为2(即允许的突发量),这是因为SmoothBursty中有一个参数:最大突发秒数(maxBurstSeconds)默认值是1s,突发量/桶容量=速率*maxBurstSeconds,所以本示例桶容量/突发量为2,例子中前两个是消费了之前积攒的突发量,而第三个开始就是正常计算的了。令牌桶算法允许将一段时间内没有消费的令牌暂存到令牌桶中,留待未来使用,并允许未来请求的这种突发.

SmoothBursty通过平均速率和最后一次新增令牌的时间计算出下次新增令牌的时间的,另外需要一个桶暂存一段时间内没有使用的令牌(即可以突发的令牌数)。另外RateLimiter还提供了tryAcquire方法来进行无阻塞或可超时的令牌消费。

因为SmoothBursty允许一定程度的突发,会有人担心如果允许这种突发,假设突然间来了很大的流量,那么系统很可能扛不住这种突发。因此需要一种平滑速率的限流工具,从而系统冷启动后慢慢的趋于平均固定速率(即刚开始速率小一些,然后慢慢趋于我们设置的固定速率)。Guava也提供了SmoothWarmingUp来实现这种需求类似漏桶算法;

  • 商品中心的限流方案
    • Google guava第二讲:Ratelimiter限流原理与实现

2.2、举例:Guava RateLimiter - SmoothWarmingUp

SmoothWarmingUp创建方式:RateLimiter.create(doublepermitsPerSecond, long warmupPeriod, TimeUnit unit)

permitsPerSecond表示每秒新增的令牌数,warmupPeriod表示在从冷启动速率过渡到平均速率的时间间隔

RateLimiter limiter = RateLimiter.create(5,1000, TimeUnit.MILLISECONDS);
for(inti =1; i < 5;i++) {
    System.out.println(limiter.acquire());
}
Thread.sleep(1000L);
for(inti =1; i < 5;i++) {
    System.out.println(limiter.acquire());
}

// 将得到类似如下的输出:
0.0
0.51767
0.357814
0.219992
0.199984
0.0
0.360826
0.220166
0.199723
0.199555

速率是梯形上升速率的,也就是说冷启动时会以一个比较大的速率慢慢到平均速率;然后趋于平均速率(梯形下降到平均速率)。可以通过调节warmupPeriod参数实现一开始就是平滑固定速率。

3、方案二:漏桶方式

水(请求)先进入到漏桶里,漏桶以一定的速度出水(接口有响应速率),当水流入速度过大会直接溢出(访问频率超过接口响应速率),然后就拒绝请求,可以看出漏桶算法能强行限制数据的传输速率

img

可见这里有两个变量,一个是桶的大小,支持流量突发增多时可以存多少的水(burst),另一个是水桶漏洞的大小(rate)。

因为漏桶的漏出速率是固定的参数,所以,即使网络中不存在资源冲突(没有发生拥塞),漏桶算法也不能使流突发(burst)到端口速率.因此,漏桶算法对于存在突发特性的流量来说缺乏效率

3.1、令牌桶和漏桶对比

  • 令牌桶是按照固定速率往桶中添加令牌,请求是否被处理需要看桶中令牌是否足够,当令牌数减为零时则拒绝新的请求;
  • 漏桶则是按照常量固定速率流出请求,流入请求速率任意,当流入的请求数累积到漏桶容量时,则新流入的请求被拒绝;
  • 令牌桶限制的是平均流入速率(允许突发请求,只要有令牌就可以处理,支持一次拿3个令牌,4个令牌),并允许一定程度突发流量;
  • 漏桶限制的是常量流出速率(即流出速率是一个固定常量值,比如都是1的速率流出,而不能一次是1,下次又是2),从而平滑突发流入速率;
  • 令牌桶允许一定程度的突发,而漏桶主要目的是平滑流入速率;
  • 两个算法实现可以一样,但是方向是相反的,对于相同的参数得到的限流效果是一样的。

4、方案三:计数器方式

计数器限流算法也是比较常用的,主要用来限制总并发数,比如数据库连接池大小、线程池大小、程序访问并发数等都是使用计数器算法。也是最简单粗暴的算法。

4.1、采用AtomicInteger

使用AomicInteger来进行统计当前正在并发执行的次数,如果超过域值就简单粗暴的直接响应给用户,说明系统繁忙,请稍后再试或其它跟业务相关的信息。

弊端:使用 AomicInteger 简单粗暴超过域值就拒绝请求,可能只是瞬时的请求量高,也会拒绝请求。

4.2、采用令牌Semaphore

使用Semaphore信号量来控制并发执行的次数,如果超过域值信号量,则进入阻塞队列中排队等待获取信号量进行执行。如果阻塞队列中排队的请求过多超出系统处理能力,则可以在拒绝请求。

相对Atomic优点:如果是瞬时的高并发,可以使请求在阻塞队列中排队,而不是马上拒绝请求,从而达到一个流量削峰的目的。

4.3、采用ThreadPoolExecutor java线程池

固定线程池大小,超出固定先线程池和最大的线程数,拒绝线程请求;

5、压力测试

给个思路

  • Linux AB

可以参考Linux - ab压力测试

  • 写代码

比如:

@SneakyThrows
public static void test(int clientSize) {
    CountDownLatch downLatch = new CountDownLatch(clientSize);
    ExecutorService fixedThreadPool = Executors.newFixedThreadPool(clientSize);
    IntStream.range(0, clientSize).forEach(i ->
            fixedThreadPool.submit(() -> {
                RestTemplate restTemplate = new RestTemplate();
                restTemplate.getForObject("http://localhost:8080/limit1", ResponseResult.class);
                downLatch.countDown();
            })
    );
    downLatch.await();
    fixedThreadPool.shutdown();
}
  • 其它测试工具,LoadRunner,Jmeter…

6、参考文章

  • 聊聊互联网限流方案 http://www.dczou.com/viemall/852.html
  • https://www.cnblogs.com/cmfwm/p/8032994.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/680820.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

rabbitmq第三课-RabbitMQ高级功能详解以及常用插件实战

一、选择合适的队列. 实际上是可以选择三种队列类型的&#xff0c;classic经典队列&#xff0c;Quorum仲裁队列&#xff0c;Stream流式队列。 后面这两种队列也是RabbitMQ在最近的几个大的版本中推出的新的队列类型。3.8.x推出了Quorum仲裁队列&#xff0c;3.9.x推出了Stream流…

MyBatis何时使用一级缓存,何时使用二级缓存?

Mybatis设计2级缓存来提升数据检索效率&#xff0c;避免每次都查询数据库。 一、一级缓存 一级缓存 Mybatis 的一级缓存是指 SQLSession&#xff0c;一级缓存的作用域是 SQlSession , Mabits 默认开启一级缓存。 在同一个SqlSession中&#xff0c;执行相同的SQL查询时&#x…

基于STM32CUBEMX驱动TOF模块VL6180与VL6180X(2)----修改测量范围

概述 当使用VL6180传感器进行测距时&#xff0c;可以通过修改缩放因子来改变可测量的距离范围。VL6180是一种基于飞行时间原理的传感器&#xff0c;通过测量光信号的往返时间来确定物体与传感器之间的距离。 默认情况下&#xff0c;VL6180传感器的测距范围约为0至200毫米。然…

显卡检测工具:GPU-Z

今天小编为大家测试了一款轻量级的GPU显卡的测试工具&#xff0c;可以查看GPU的详细信息&#xff0c;以供各位同学们学习。 一、简单介绍 GPU-Z是一款方便实用的软件工具&#xff0c;专门为用户提供视频卡和GPU的详尽信息。它具有轻巧的特点&#xff0c;不需要安装即可使用&am…

2023版智慧高速智慧公路总体建设方案,售前人员必备方案

导读&#xff1a;原文《智慧高速智慧公路总体建设方案》共83页PPT&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。 如需获取完整的电子版内容参考学习 您可以关注评论…

【雷达原理】基本雷达方程的推导

基本雷达方程 一、研究目的二、推导过程1、基本雷达方程常用的表达形式2、计算案例3、仿真代码 参考文献 一、研究目的 雷达方程定量地描述了作用距离与雷达参数及目标特性之间的关系。 研究雷达方程主要有以下作用&#xff1a; &#xff08;1&#xff09;根据雷达参数来估算雷…

慕课:笔记

课程链接&#xff1a;直面JavaScript中的30个疑难杂症_JavaScript面试题-慕课网 第二章&#xff1a;数据类型 数据类型是每门编程语言的必修之课&#xff0c;你是否对JavaScript的数据类型和检测存在困惑&#xff0c;本章节将为你揭晓其中的奥秘&#xff0c;让你对数据类型有…

矩阵压缩算法

当矩阵中存在着重复元素时&#xff0c;为了节省空间会采用压缩算法&#xff0c;关键在于原矩阵空间与压缩后数据结构的对应&#xff1b; 1.对称压缩&#xff1a;数据沿对角线对称的情况&#xff1b; 将矩阵压缩为一维数组&#xff0c;数组的长度是&#xff1a; 对于num[n][n…

VMware虚拟机暴露端口至公网方法流程详解

目录 需求背景 解决方法 准备工作 虚拟机ip设置方法 需求背景 一台电脑需要连接另一台电脑上的虚拟机的端口&#xff0c;直接ping是无法ping通的&#xff0c;因为本地虚拟机的端口未暴露至公网。 解决方法 虚拟机&#xff1a;CentOS 7 64 Linux 本机&#xff1a;Window…

C专家编程 —— 运行时数据结构

文章目录 代码和数据段代码与可执行文件中对应的位置可执行文件中的段在内存中的布局加入动态链接库的内存空间布局堆栈段的作用过程活动记录函数调用过程记录举例 static和auto关键字 汇编嵌入C代码 代码和数据 代码和数据的区别可以理解为编译时和运行时的分界线。 代码&…

guacamole 纯web rdp预研:相关JAVA基础

文章目录 guacamole 纯web rdp预研:相关JAVA基础1. pom.xml2 scm标签3 application/octet-stream4. tomcat webapps下war包5 maven-assembly-plugin maven assembly插件介绍什么是assembly&#xff1f; 6. Mavenz中的source插件的使用和注意事项。7. Maven私库安装与配置8. 配置…

深度学习之目标检测R-CNN模型算法流程详解说明(超详细理论篇)

1.R-CNN论文背景 2. R-CNN算法流程 3. R-CNN创新点 一、R-CNN论文背景 论文网址https://openaccess.thecvf.com/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf   RCNN&#xff08;Region-based Convolutional Neural Networks&#xff…

牛客网基础语法81~90题

牛客网基础语法81~90题&#x1f618;&#x1f618;&#x1f618; &#x1f4ab;前言&#xff1a;今天是咱们第九期刷牛客网上的题目。 &#x1f4ab;目标&#xff1a;可以循环嵌套使用熟练&#xff0c;数组的变问题&#xff0c;对数学知识掌握更加清晰。 &#x1f4ab;鸡汤&…

Matplotlib---热力图

1. 热力图 imshow 是 Matplotlib 库中一个函数&#xff0c;主要用于在 Python 中显示图像。它的完整参数列表如下&#xff1a; matplotlib.pyplot.imshow(X, cmapNone, normNone, aspectNone, interpolationNone, alphaNone, vminNone, vmaxNone, originNone, extentNone, sh…

管理类联考——逻辑——知识篇——论证推理——三、假设——haimian

假设 考点分析 假设 年度 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023题量1132111 主要问法 上述论述是基于以下哪项假设?基于以下哪项假设能使上述推理成立?上述论证依赖于以下哪项假设?得到这一结论的前提条件是? 解题思路 阅读问题&#xff0c;确…

【TCP/IP】多播 - 定义、原理及编程实现(TTL、多播组、收发信息)

目录 多播 多播的原理 多播的数据传输时的特点 TTL 的概念 TTL 和 多播组的配置方法 多播的编程与实现 发送者 接收者 多播 多播是一种介于单播和广播通信之间的技术方式&#xff0c;可以将发送者所需要发送的数据包分别发送给分散在不同子网中的一组接收者。 多播的原…

分布式软件架构——事务ACID

事务概念 事务处理几乎是每一个信息系统中都会涉及到的问题&#xff0c;它存在的意义就是保证系统中的数据是正确的&#xff0c;不同数据间不会产生矛盾&#xff0c;也就是保证数据状态的一致性&#xff08;Consistency&#xff09; 关于一致性&#xff0c;我们重点关注的是数…

ElasticSearch-安装Head可视化插件

安装Head可视化插件 首先需要依赖node.js和npm环境 1 安装node.js 官方下载地址:http://nodejs.cn/download/ 下载LTS版本&#xff08;长期稳定版本&#xff09; 安装可以更改安装路径,其余的都是选择 下一步傻瓜是安装 安装成功后如下 命令测试 node -v 查看node的版本 n…

理解redis的多线程和IO多路复用

参考资料 https://blog.csdn.net/TZ845195485/article/details/119745735 Redis单线程和多线程问题的背景 Redis里程碑版本迭代 Redis的单线程 主要是指Redis的网络IO和键值对读写是由一个线程来完成的&#xff0c;Redis在处理客户端的请求时包括获取&#xff08;socket读&a…

「实验记录」MIT 6.824 KVRaft Lab3A Without Log Compaction

#Lab3A - KVRaft without log compaction I. SourceII. My CodeIII. MotivationIV. SolutionS1 - client请求S2 - server回应 V. Result I. Source MIT-6.824 2020 课程官网Lab3: KVRaft 实验主页simviso 精品付费翻译 MIT 6.824 课程Paper - Raft extended version II. My C…