设计模式(二十三):行为型之解释器模式

news2024/9/25 3:27:59

设计模式系列文章

设计模式(一):创建型之单例模式

设计模式(二、三):创建型之工厂方法和抽象工厂模式

设计模式(四):创建型之原型模式

设计模式(五):创建型之建造者模式

设计模式(六):结构型之代理模式

设计模式(七):结构型之适配器模式

设计模式(八):结构型之装饰器模式

设计模式(九):结构型之桥接模式

设计模式(十):结构型之外观模式

设计模式(十一):结构型之组合模式

设计模式(十二):结构型之享元模式

设计模式(十三):行为型之模板方法模式

设计模式(十四):行为型之策略模式

设计模式(十五):行为型之命令模式

设计模式(十六):行为型之责任链模式

设计模式(十七):行为型之状态模式

设计模式(十八):行为型之观察者模式

设计模式(十九):行为型之中介者模式

设计模式(二十):行为型之迭代器模式

设计模式(二十一):行为型之访问者模式

设计模式(二十二):行为型之备忘录模式

设计模式(二十三):行为型之解释器模式


目录

  • 一、设计模式分类
  • 二、解释器模式
    • 1、概述
    • 2、结构
    • 3、实现
    • 4、优缺点
    • 5、使用场景


一、设计模式分类

  • 创建型模式
    • 用于描述“怎样创建对象”,它的主要特点是“将对象的创建与使用分离”
    • 提供了单例、原型、工厂方法、抽象工厂、建造者 5 种创建型模式
  • 结构型模式
    • 用于描述如何将类或对象按某种布局组成更大的结构
    • 提供了代理、适配器、桥接、装饰、外观、享元、组合 7 种结构型模式
  • 行为型模式
    • 用于描述类或对象之间怎样相互协作共同完成单个对象无法单独完成的任务,以及怎样分配职责
    • 提供了模板方法、策略、命令、职责链、状态、观察者、中介者、迭代器、访问者、备忘录、解释器 11 种行为型模式

二、解释器模式

1、概述

在这里插入图片描述

  • 如上图,设计一个软件用来进行加减计算
  • 我们第一想法就是使用工具类,提供对应的加法和减法的工具方法
//用于两个整数相加
public static int add(int a,int b){
    return a + b;
}

//用于两个整数相加
public static int add(int a,int b,int c){
    return a + b + c;
}

//用于n个整数相加
public static int add(Integer ... arr) {
    int sum = 0;
    for (Integer i : arr) {
        sum += i;
    }
    return sum;
}
  • 上面的形式比较单一、有限,如果形式变化非常多,这就不符合要求,因为加法和减法运算,两个运算符与数值可以有无限种组合方式
  • 显然,现在需要一种翻译识别机器,能够解析由数字以及 + - 符号构成的合法的运算序列
  • 如果把运算符和数字都看作节点的话,能够逐个节点的进行读取解析运算,这就是解释器模式的思维

定义

  • 给定一个语言,定义它的文法表示,并定义一个解释器,这个解释器使用该标识来解释语言中的句子

文法(语法)规则:

文法是用于描述语言的语法结构的形式规则

expression ::= value | plus | minus
plus ::= expression ‘+’ expression   
minus ::= expression ‘-’ expression  
value ::= integer

注意: 这里的符号“::=”表示“定义为”的意思,竖线 | 表示或,左右的其中一个,引号内为字符本身,引号外为语法

2、结构

解释器模式包含以下主要角色:

  • 抽象表达式(Abstract Expression)角色:定义解释器的接口,约定解释器的解释操作,主要包含解释方法 interpret()
  • 终结符表达式(Terminal Expression)角色:是抽象表达式的子类,用来实现文法中与终结符相关的操作,文法中的每一个终结符都有一个具体终结表达式与之相对应
  • 非终结符表达式(Nonterminal Expression)角色:也是抽象表达式的子类,用来实现文法中与非终结符相关的操作,文法中的每条规则都对应于一个非终结符表达式
  • 环境(Context)角色:通常包含各个解释器需要的数据或是公共的功能,一般用来传递被所有解释器共享的数据,后面的解释器可以从这里获取这些值
  • 客户端(Client):主要任务是将需要分析的句子或表达式转换成使用解释器对象描述的抽象语法树,然后调用解释器的解释方法,当然也可以通过环境角色间接访问解释器的解释方法

3、实现

【例】设计实现加减法的软件

类图如下:

在这里插入图片描述
代码如下:

  • 抽象表达式类
public abstract class AbstractExpression {
    public abstract int interpret(Context context);
}
  • 封装变量的类
public class Variable extends AbstractExpression {

    //声明存储变量名的成员变量
    private String name;

    public Variable(String name) {
        this.name = name;
    }

    public int interpret(Context context) {
        //直接返回变量的值
        return context.getValue(this);
    }

    @Override
    public String toString() {
        return name;
    }
}
  • 加法表达式类
public class Plus extends AbstractExpression {

    //+号左边的表达式
    private AbstractExpression left;
    //+号右边的表达式
    private AbstractExpression right;

    public Plus(AbstractExpression left, AbstractExpression right) {
        this.left = left;
        this.right = right;
    }

    public int interpret(Context context) {
        //将左边表达式的结果和右边表达式的结果进行相加
        return left.interpret(context) + right.interpret(context);
    }

    @Override
    public String toString() {
        return "(" + left.toString() + " + " + right.toString() + ")";
    }
}
  • 减法表达式类
public class Minus extends AbstractExpression {

    //-号左边的表达式
    private AbstractExpression left;
    //-号右边的表达式
    private AbstractExpression right;

    public Minus(AbstractExpression left, AbstractExpression right) {
        this.left = left;
        this.right = right;
    }

    public int interpret(Context context) {
        //将左边表达式的结果和右边表达式的结果进行相减
        return left.interpret(context) - right.interpret(context);
    }

    @Override
    public String toString() {
        return "(" + left.toString() + " - " + right.toString() + ")";
    }
}
  • 环境类
public class Context {

    //定义一个map集合,用来存储变量及对应的值
    private final Map<Variable,Integer> map = new HashMap<>();

    //添加变量的功能
    public void assign(Variable var, Integer value) {
        map.put(var,value);
    }

    //根据变量获取对应的值
    public int getValue(Variable var) {
        return map.get(var);
    }
}
  • 测试类
public class Client {
    public static void main(String[] args) {
        //创建环境对象
        Context context = new Context();

        //创建多个变量对象
        Variable a = new Variable("a");
        Variable b = new Variable("b");
        Variable c = new Variable("c");
        Variable d = new Variable("d");

        //将变量存储到环境对象中
        context.assign(a,1);
        context.assign(b,2);
        context.assign(c,3);
        context.assign(d,4);

        //获取抽象语法树   
        AbstractExpression expression = new Plus(new Minus(new Plus(a, b), c), d);

        //解释(计算)
        int result = expression.interpret(context);

        System.out.println(expression + " = " + result);
    }
}

输出结果:

(((a + b) - c) + d) = 4

4、优缺点

优点

  • 易于改变和扩展文法
    • 由于在解释器模式中使用类来表示语言的文法规则,因此可以通过继承等机制来改变或扩展文法
    • 每一条文法规则都可以表示为一个类,因此可以方便地实现一个简单的语言
  • 实现文法较为容易
    • 在抽象语法树中每一个表达式节点类的实现方式都是相似的
    • 这些类的代码编写都不会特别复杂
  • 增加新的解释表达式较为方便
    • 如果用户需要增加新的解释表达式只需要对应增加一个新的终结符表达式或非终结符表达式类
    • 原有表达式类代码无须修改,符合 “开闭原则”

缺点

  • 对于复杂文法难以维护
    • 在解释器模式中,每一条规则至少需要定义一个类
    • 因此如果一个语言包含太多文法规则,类的个数将会急剧增加,导致系统难以管理和维护
  • 执行效率较低
    • 由于在解释器模式中使用了大量的循环和递归调用
    • 因此在解释较为复杂的句子时其速度很慢,而且代码的调试过程也比较麻烦

5、使用场景

  • 当语言的文法较为简单,且执行效率不是关键问题时
  • 当问题重复出现,且可以用一种简单的语言来进行表达时
  • 当一个语言需要解释执行,并且语言中的句子可以表示为一个抽象语法树的时候

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/657945.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

chapter8:SpringBoot启动配置原理

尚硅谷SpringBoot顶尖教程 1. 启动流程简介 SpringBoot应用从主启动类启动后的运行流程主要包含下面几个要点&#xff1a; &#xff08;1&#xff09;准备环境 执行ApplicationContextInitializer#initialize()方法&#xff1b;监听器SpringApplicationRunListener回调cont…

ADC 读取电位器旋钮,用回差消除临界值档位跳动

就是比如&#xff0c;用电位器当旋钮做风扇调速&#xff0c;划分出10 个速度档位&#xff0c;对应10 个ADC 转换结果的阈值。如果直接比较阈值&#xff0c;当旋钮拧到临近阈值的地方时&#xff0c;ADC 结果的微小跳动会导致风扇档位在两个级别之间不停左右横跳&#xff0c;因此…

Linux MySQL 索引 事务 存储引擎 死锁

索引&#xff08;面试问得多&#xff09; 索引是一个排序的列表&#xff0c;包含索引字段的值和其相对应的行数据所在的物理地址 作用 加快表的查询速度&#xff0c;还可以对字段排序 如何实现的搜索加速&#xff1f; 没有索引的情况下&#xff0c;要查询某行数据&#xff0c;需…

代码审计——命令执行详解

为方便您的阅读&#xff0c;可点击下方蓝色字体&#xff0c;进行跳转↓↓↓ 01 漏洞描述02 审计要点03 漏洞特征04 漏洞案例05 修复方案 01 漏洞描述 命令注入是指因为系统使用了可以执行命令的危险函数&#xff0c;但是调用这些函数的参数可控&#xff0c;并没有做过滤或过滤不…

Flutter集成Umeng步骤及若干问题总结

由于Flutter项目中用到umeng统计及手机号一键登录功能&#xff0c;但实际集成使用中遇到各种坑&#xff0c;文档及demo却都没有提及&#xff0c;因此写下这篇文章&#xff0c;有遇到同样问题的同学可以参考下。 集成之前&#xff0c;最好先查看一下文档&#xff1a;https://de…

LangChain for LLM Application Development 基于LangChain开发大语言应用模型(上)

以下内容均整理来自deeplearning.ai的同名课程 Location 课程访问地址 DLAI - Learning Platform Beta (deeplearning.ai) 一、什么是LangChain 1、LangChain介绍 LangChain是一个框架&#xff0c;用于开发由大语言模型驱动的应用程序。开发者相信&#xff0c;最强大的、差异…

Ubuntu+Pycharm+QtDesigner,并配置Pyqt5

1. 安装PyQt5 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyqt5 2. 安装ubuntu环境下所需要的依赖包 sudo apt install pyqt5* 3. 安装QtDesigner sudo apt install qttools5-dev-tools 4. 设置Pycharm 步骤&#xff1a; File–>setting–>Tools–&…

ESP32设备驱动-VCNL4040趋近传感器

VCNL4040趋近传感器 文章目录 VCNL4040趋近传感器1、VNCL4040介绍2、硬件准备3、软件准备4、驱动实现1、VNCL4040介绍 VCNL4040 将趋近传感器 (PS)、环境光传感器 (ALS) 和高功率 IRED 集成到一个小型封装中。它通过CMOS工艺将光电二极管、放大器和模数转换电路集成到一个芯片…

Linux->线程库接口

目录 前言&#xff1a; 1 进程和线程 2 线程库接口 2.1 线程库基础理解 2.2 创建线程 2.2 线程资源回收 2.3 线程分离 前言&#xff1a; 本篇主要是对Linux原装线程库的函数接口进行学习&#xff0c;还有一部分的线程概念补充。 1 进程和线程 博主在上一篇文章当中有讲过…

中北大学 - 信息对抗大三下学习课程设计(爬取招标网站,进行招标分析,数据保存execl中)

文章目录 1. 题目描述2. 项目细节分析定时爬取任务思路避免多次爬取数据重复问题网站结构根据爬取信息确认招标地区 3. 项目代码4. 运行截图 1. 题目描述 中北大学信息安全技术爬虫课程设计 题目 5&#xff1a;招投标信息分析系统 &#xff08;20050441 2005031113&#xff09…

Floyd算法图解,C++实现Floyd算法

Floyd算法简介 Floyd算法是一种多源最短路径算法&#xff0c;是利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法&#xff0c;与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特弗洛伊德命名。 时间复杂度&am…

Python模块multiprocessing 实现多进程并发

简介 multiprocessing模块是Python标准库中提供的一个用于实现多进程编程的模块。它基于进程而不是线程&#xff0c;可以利用多核CPU的优势&#xff0c;提高程序的执行效率&#xff0c;同时也可以实现进程间通信和数据共享。 目录 1. 参数说明 1.1. Process&#xff08;控制进…

推荐系统初谈

文章目录 简介推荐系统与搜索引擎发展历史所属领域 推荐系统分类概览基于内容的推荐基于协同过滤的推荐基于内存的协同过滤基于模型的协同过滤基于矩阵分解的推荐 推荐系统的评价指标推荐系统存在的问题参考文献 简介 21年笔记迁移&#xff0c;主要介绍了推荐系统的定义、发展…

【IC设计】ICC1 workshop lab guide 学习笔记

文章目录 Lab1 Data Setup&Basic Flow1.1 Create a Milkyway library1.2 Load the Netlist,TLU,Constraints and Controls1.3 Basic Flow:Design Planning1.4 Bsic Flow:Placement1.5 Basic Flow:CTS1.6 Basic Flow:Routing Design Planning2.1 Load the Design2.2 Initial…

算法刷题-字符串-反转字符串II

简单的反转还不够&#xff0c;我要花式反转 541. 反转字符串II 力扣题目链接 给定一个字符串 s 和一个整数 k&#xff0c;从字符串开头算起, 每计数至 2k 个字符&#xff0c;就反转这 2k 个字符中的前 k 个字符。 如果剩余字符少于 k 个&#xff0c;则将剩余字符全部反转。 …

C++笔记之初始化线程的所有方法

code review! C笔记之初始化线程的所有方法 文章目录 C笔记之初始化线程的所有方法一.非类中初始化线程1.使用函数指针初始化线程2.lambda表达式初始化线程3.使用成员函数初始化线程4.使用函数对象(Functor)初始化线程5.使用std::bind绑定函数及其参数初始化线程 二.类中初始化…

滤波电容计算举例

例&#xff1a;输入电压220VAC&#xff0c;功率4W&#xff1b;要求输出电压波动不超过5%&#xff0c;试计算滤波电容容量。 解&#xff1a;&#xff08;1&#xff09;电容的储能公式为&#xff1a;Wc1/2CU^2 当电容充电到峰值电压&#xff08;即220x1.414310V&#xff09;时&am…

数仓的分层理论

一、简介 2021-4-25 11:04:16 数据仓库分层是数据仓库设计中非常重要的一个环节&#xff0c;一个好的分层设计可以极大地简化数据仓库的操作&#xff0c;提升使用体验。然需要注意的是&#xff0c;分层理论并不绝对&#xff0c;只是提供一种普适的指导思想和原则&#xff0c;…

[Spring Cloud]:Study Notes·壹

文章目录 摘要1 认识微服务1.1 单体架构与分布式架构1.2 分布式架构与微服务1.3 微服务架构 2 nacos2.1 什么是nacos2.2 nacos使用2.2.1 nacos使用逻辑2.2.2 启动下载好的nacos2.2.3 引入依赖2.2.4 各注册服务中配置nacos相关信息2.2.5 测试nacos注册成功 3 Ribbon负载均衡3.1 …

改进YOLO系列 | YOLOv5/v7 引入谷歌 Lion 优化器

论文地址:https://arxiv.org/pdf/2302.06675.pdf 代码地址:https://github.com/google/automl/tree/master/lion 我们提出了一种将算法发现作为程序搜索的方法,并将其应用于发现用于深度神经网络训练的优化算法。我们利用高效的搜索技术来探索一个无限且稀疏的程序空间。为了…