TensorFlow Core—基本分类:对服装图像进行分类

news2024/12/21 14:17:22

    现在人工智能很火的,看到了这篇文章,给自己普及一下基础知识,也分享给大家,希望对大家有用。

本指南将训练一个神经网络模型,对运动鞋和衬衫等服装图像进行分类。即使您不理解所有细节也没关系;这只是对完整 TensorFlow 程序的快速概述,详细内容会在您实际操作的同时进行介绍。

本指南使用了 tf.keras,它是 TensorFlow 中用来构建和训练模型的高级 API。

# TensorFlow and tf.keras
import tensorflow as tf

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)
2022-08-31 04:53:21.992867: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2022-08-31 04:53:22.704392: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvrtc.so.11.1: cannot open shared object file: No such file or directory
2022-08-31 04:53:22.704645: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvrtc.so.11.1: cannot open shared object file: No such file or directory
2022-08-31 04:53:22.704658: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
2.10.0-rc3

一、导入 Fashion MNIST 数据集

本指南使用 Fashion MNIST 数据集,该数据集包含 10 个类别的 70,000 个灰度图像。这些图像以低分辨率(28x28 像素)展示了单件衣物,如下所示:

图 1. Fashion-MNIST 样本(由 Zalando 提供,MIT 许可)。

Fashion MNIST 旨在临时替代经典 MNIST 数据集,后者常被用作计算机视觉机器学习程序的“Hello, World”。MNIST 数据集包含手写数字(0、1、2 等)的图像,其格式与您将使用的衣物图像的格式相同。

本指南使用 Fashion MNIST 来实现多样化,因为它比常规 MNIST 更具挑战性。这两个数据集都相对较小,都用于验证某个算法是否按预期工作。对于代码的测试和调试,它们都是很好的起点。

在本指南中,我们使用 60,000 张图像来训练网络,使用 10,000 张图像来评估网络学习对图像进行分类的准确程度。您可以直接从 TensorFlow 中访问 Fashion MNIST。直接从 TensorFlow 中导入和加载 Fashion MNIST 数据:

fashion_mnist = tf.keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

加载数据集会返回四个 NumPy 数组:

  • train_images 和 train_labels 数组是训练集,即模型用于学习的数据。
  • 测试集test_images 和 test_labels 数组会被用来对模型进行测试。

图像是 28x28 的 NumPy 数组,像素值介于 0 到 255 之间。标签是整数数组,介于 0 到 9 之间。这些标签对应于图像所代表的服装

标签
0T恤/上衣
1裤子
2套头衫
3连衣裙
4外套
5凉鞋
6衬衫
7运动鞋
8
9短靴

每个图像都会被映射到一个标签。由于数据集不包括类名称,请将它们存储在下方,供稍后绘制图像时使用:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

二、浏览数据

在训练模型之前,我们先浏览一下数据集的格式。以下代码显示训练集中有 60,000 个图像,每个图像由 28 x 28 的像素表示:

train_images.shape


(60000, 28, 28)
同样,训练集中有 60,000 个标签:
len(train_labels)
60000

每个标签都是一个 0 到 9 之间的整数:

train_labels
array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)

测试集中有 10,000 个图像。同样,每个图像都由 28x28 个像素表示:

test_images.shape
(10000, 28, 28)
测试集包含 10,000 个图像标签:
len(test_labels)
10000

三、预处理数据

在训练网络之前,必须对数据进行预处理。如果您检查训练集中的第一个图像,您会看到像素值处于 0 到 255 之间:

plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()

将这些值缩小至 0 到 1 之间,然后将其馈送到神经网络模型。为此,请将这些值除以 255。请务必以相同的方式对训练集测试集进行预处理:

train_images = train_images / 255.0

test_images = test_images / 255.0

为了验证数据的格式是否正确,以及您是否已准备好构建和训练网络,让我们显示训练集中的前 25 个图像,并在每个图像下方显示类名称。

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])
plt.show()

四、构建模型

构建神经网络需要先配置模型的层,然后再编译模型。

设置层

神经网络的基本组成部分是。层会从向其馈送的数据中提取表示形式。希望这些表示形式有助于解决手头上的问题。

大多数深度学习都包括将简单的层链接在一起。大多数层(如 tf.keras.layers.Dense)都具有在训练期间才会学习的参数。

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10)
])

该网络的第一层 tf.keras.layers.Flatten 将图像格式从二维数组(28 x 28 像素)转换成一维数组(28 x 28 = 784 像素)。将该层视为图像中未堆叠的像素行并将其排列起来。该层没有要学习的参数,它只会重新格式化数据。

展平像素后,网络会包括两个 tf.keras.layers.Dense 层的序列。它们是密集连接或全连接神经层。第一个 Dense 层有 128 个节点(或神经元)。第二个(也是最后一个)层会返回一个长度为 10 的 logits 数组。每个节点都包含一个得分,用来表示当前图像属于 10 个类中的哪一类。

编译模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数 - 测量模型在训练期间的准确程度。你希望最小化此函数,以便将模型“引导”到正确的方向上。
  • 优化器 - 决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标 - 用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

五、训练模型

训练神经网络模型需要执行以下步骤:

  1. 将训练数据馈送给模型。在本例中,训练数据位于 train_images 和 train_labels 数组中。
  2. 模型学习将图像和标签关联起来。
  3. 要求模型对测试集(在本例中为 test_images 数组)进行预测。
  4. 验证预测是否与 test_labels 数组中的标签相匹配。

向模型馈送数据

要开始训练,请调用 model.fit 方法,这样命名是因为该方法会将模型与训练数据进行“拟合”:

model.fit(train_images, train_labels, epochs=10)
Epoch 1/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.4942 - accuracy: 0.8267
Epoch 2/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3747 - accuracy: 0.8648
Epoch 3/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3394 - accuracy: 0.8757
Epoch 4/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3134 - accuracy: 0.8850
Epoch 5/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2964 - accuracy: 0.8919
Epoch 6/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2806 - accuracy: 0.8967
Epoch 7/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2701 - accuracy: 0.8997
Epoch 8/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2564 - accuracy: 0.9031
Epoch 9/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2499 - accuracy: 0.9076
Epoch 10/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2410 - accuracy: 0.9099
<keras.callbacks.History at 0x7f2b8bca76d0>

在模型训练期间,会显示损失和准确率指标。此模型在训练数据上的准确率达到了 0.91(或 91%)左右。

评估准确率

接下来,比较模型在测试数据集上的表现:

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

print('\nTest accuracy:', test_acc)
313/313 - 1s - loss: 0.3453 - accuracy: 0.8794 - 747ms/epoch - 2ms/step

Test accuracy: 0.8794000148773193

结果表明,模型在测试数据集上的准确率略低于训练数据集。训练准确率和测试准确率之间的差距代表过拟合。过拟合是指机器学习模型在新的、以前未曾见过的输入上的表现不如在训练数据上的表现。过拟合的模型会“记住”训练数据集中的噪声和细节,从而对模型在新数据上的表现产生负面影响。

进行预测

模型经过训练后,您可以使用它对一些图像进行预测。附加一个 Softmax 层,将模型的线性输出 logits 转换成更容易理解的概率。

probability_model = tf.keras.Sequential([model, 
                                         tf.keras.layers.Softmax()])

predictions = probability_model.predict(test_images)

313/313 [==============================] - 0s 1ms/step

在上例中,模型预测了测试集中每个图像的标签。我们来看看第一个预测结果:

predictions[0]
array([8.5380130e-08, 1.2862756e-06, 1.7201529e-07, 2.4579521e-09,
       1.1657544e-05, 3.9379053e-02, 3.2284350e-07, 2.0818772e-02,
       3.1966898e-08, 9.3978864e-01], dtype=float32)

预测结果是一个包含 10 个数字的数组。它们代表模型对 10 种不同服装中每种服装的“置信度”。您可以看到哪个标签的置信度值最大:

np.argmax(predictions[0])
9

因此,该模型非常确信这个图像是短靴,或 class_names[9]。通过检查测试标签发现这个分类是正确的:

test_labels[0]
9

您可以将其绘制成图表,看看模型对于全部 10 个类的预测。

def plot_image(i, predictions_array, true_label, img):
  true_label, img = true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])

  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label = np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'

  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                100*np.max(predictions_array),
                                class_names[true_label]),
                                color=color)

def plot_value_array(i, predictions_array, true_label):
  true_label = true_label[i]
  plt.grid(False)
  plt.xticks(range(10))
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color="#777777")
  plt.ylim([0, 1])
  predicted_label = np.argmax(predictions_array)

  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')

验证预测结果

在模型经过训练后,您可以使用它对一些图像进行预测。

我们来看看第 0 个图像、预测结果和预测数组。正确的预测标签为蓝色,错误的预测标签为红色。数字表示预测标签的百分比(总计为 100)。

i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()

i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()

让我们用模型的预测绘制几张图像。请注意,即使置信度很高,模型也可能出错。

# Plot the first X test images, their predicted labels, and the true labels.
# Color correct predictions in blue and incorrect predictions in red.
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions[i], test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()

六、使用训练好的模型

最后,使用训练好的模型对单个图像进行预测。

# Grab an image from the test dataset.
img = test_images[1]

print(img.shape)
(28, 28)

tf.keras模型经过了优化,可同时对一个或一组样本进行预测。因此,即便您只使用一个图像,您也需要将其添加到列表中:

# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))

print(img.shape)
(1, 28, 28)

现在预测这个图像的正确标签:

predictions_single = probability_model.predict(img)

print(predictions_single)
1/1 [==============================] - 0s 22ms/step [[5.2377120e-05 3.1492354e-12 9.9818450e-01 6.7298994e-10 8.3265459e-04 6.6809568e-13 9.3045016e-04 2.3704929e-13 4.5789728e-09 1.9284208e-10]]
plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
plt.show()


 keras.Model.predict会返回一组列表,每个列表对应一批数据中的每个图像。在批次中获取对我们(唯一)图像的预测:

np.argmax(predictions_single[0])
2
该模型会按照预期预测标签。
# MIT License
#
# Copyright (c) 2017 François Chollet
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/653427.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

「FPGA」基本时序电路元件——锁存器和触发器

「FPGA」基本时序电路元件——锁存器和触发器 文章目录 「FPGA」基本时序电路元件——锁存器和触发器1. 最简单的双稳态元件2. SR锁存器3. D锁存器&#xff08;data latch&#xff09;4. D触发器5. 寄存器&#xff08;register&#xff09; FPGA是一种数字电路实现的方式&#…

算法设计与分析知识点整理

文章目录 前言一、算法的基本概念1.算法的基本特征2.算法设计需要满足的目标3.算法和程序的区别 二、时间复杂度计算1.大O表示法2.最坏和平均情况3.根据递归方程求解时间复杂度3.1 根据递归树求解3.2 根据主方法求解 三、六大算法1.分治法1.1 算法思路1.2 适用范围1.3 基本步骤…

【MySql】聚合函数group byOJ题目

文章目录 聚合函数分组group by使用OJ题目描述描述 本篇主要介绍mysql的聚合函数和group by的使用&#xff0c;最后是OJ题目的练习。 聚合函数 MySQL中的聚合函数用于对数据进行计算和统计&#xff0c;常见的聚合函数包括下面列举出来的聚合函数&#xff1a; 函数 说明…

python开发构建深度学习分类模型,探索AI在地震事件分类中的应用于可解释性分析

最近看到了一篇蛮有意思的论文&#xff0c;如下&#xff1a; 将深度学习开发应用到了地震事件分析分类领域中去了&#xff0c;感觉挺有意思&#xff0c;就想着也来自己体验下看看&#xff0c;这里的数据集是网上找到的一个地震波应该是仿真实验的数据集&#xff0c;我们先来看下…

Pytest教程__Hook函数pytest_addoption(parser):定义自己的命令行参数(14-1)

考虑场景&#xff1a; 我们的自动化用例需要支持在不同测试环境运行&#xff0c;有时候在dev环境运行&#xff0c;有时候在test环境运行&#xff1b;有时候需要根据某个参数不同的参数值&#xff0c;执行不同的业务逻辑&#xff1b; 上面的场景我们都可以通过“在命令行中输入…

浏览器之BFC

浏览器之BFC 什么是BFCBFC的特性特性1&#xff1a;BFC会阻止垂直外边距折叠①相邻兄弟元素margin重叠问题②父子元素margin重叠问题 特性2&#xff1a;BFC不会重叠浮动元素BFC可以包含浮动----清除浮动 什么是BFC Block formatting context直译为"块级格式化上下文Block …

Python进阶语法之字符串

Python进阶语法之字符串 当我们处理文本数据时&#xff0c;字符串是不可避免的数据类型。Python 提供了很多字符串方法&#xff0c;它们可以帮助我们更方便地操作和处理字符串。在本篇博客中&#xff0c;我们将深入探讨 Python 字符串。 字符串的基本操作 在深入了解字符串…

亚马逊云科技 | Summit - 中国峰会

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 亚马逊云科技 | Summit - 中国峰会 亚马逊云科技提供全球覆盖广泛、服务深入的云平台&#xff0c;全球数据中心提供超过 200 项功能齐全的服务连续 11 年被 Gartner 评…

【python】数据可视化,使用pandas.merge()对dataframe和geopandas类型数据进行数据对齐

目录 0.环境 1.适用场景 2.pandas.merge()函数详细介绍 3.名词解释“数据对齐”&#xff08;来自chatGPT3.5&#xff09; 4.本文将给出两种数据对齐的例子 1&#xff09;dataframe类型数据和dataframe类型数据对齐&#xff08;对齐NAME列&#xff09;&#xff1b; 数据对…

[游戏开发]Unity颜色矫正无障碍方案

[目录] 0. 前言1. 颜色矫正2. 线性变换Shader2. 颜色纠正参数3. 摄像机后处理4. 效果5. 结束咯 0. 前言 之前有在关注色盲视觉纠正问题&#xff0c;最近在调整游戏的时候就打算把这个用上。 色弱色盲&#xff0c;这其实算是一种误称吧&#xff0c;只是人类中的少数派&#xf…

保护您的数据与ManageEngine Log360

在当今数字时代&#xff0c;网络安全成为了企业和组织不可忽视的重要议题。随着信息技术的发展和互联网的普及&#xff0c;企业面临着越来越多的网络威胁和数据泄露的风险。为了保护重要的数据资产和防止潜在的攻击&#xff0c;日志管理和事件关联成为了至关重要的一环。 Mana…

IIS安装ARR(Application Request Router)负载均衡扩展

IIS7.5安装ARR(Application Request Router)负载均衡扩展 本文主要记录我在IIS中安装ARR的全流程&#xff0c;本文参考了网上一些教程&#xff0c;但可能时间关系&#xff0c;与一些早期文章所述有所出入。 花了我半天的时间才最终安装成功&#xff0c;因此这里做一个记录。本…

立体解析Fiddler Filters:让你快速捕获和过滤网络请求

如果要对当前Fiddler的抓包进行过滤&#xff08;如过滤掉与测试项目无关的抓包请求&#xff09;&#xff0c;那功能强大的 Filters 过滤器能帮到你。 如果你想学习Fiddler抓包工具&#xff0c;我这边给你推荐一套视频&#xff0c;这个视频可以说是B站播放全网第一的Fiddler抓包…

动态规划算法(多状态dp1)

动态规划算法专辑之多状态dp问题&#xff08;1&#xff09; 一、什么是多状态 多状态dp问题&#xff0c;指一个规模问题下存在多种状态&#xff0c;我们需要联合关注多种状态间的相互转移&#xff0c;才可以求解目的问题。 多状态问题可以理解为有限状态机&#xff0c;在有限…

节省时间、提升效率——Jetpack关爱你的摸鱼时间

JetPack Jetpack 是一个由 Google 提供的 Android 应用开发库集合。它旨在简化 Android 应用程序开发过程&#xff0c;提供一系列的库和工具&#xff0c;帮助开发者快速构建高质量、健壮、可扩展的 Android 应用。 Jetpack 包含多个组件&#xff0c;每个组件都专注于不同的功…

Nginx 的reload,升级以及关闭流程

一、reload流程 1 向master进程发送HUP信号&#xff08;reload命令&#xff09; 2 master进程校验配置语法是否正确&#xff1b; 3 master打开可能引入的新的监听端口&#xff1b; 4 master用新的配置文件启动新的worker子进程&#xff1b; 5 启动新的worker子进程之后&#x…

小马赠书【第8期】清华社 618 IT BOOK 多得活动(送书5本)

本期 敬 之 共精心挑选了 15 本 IT 相关书籍&#xff0c;包含 前端、后端、数据分析、人工智能、python 等各个领域。关于如何参与等具体活动信息请看活动详情页&#xff0c;以下是 15 本 IT 书籍介绍&#xff1a; 活动详情页&#xff1a;小马赠书【第8期】 1. 《Linux设备驱动…

怎么入手性能测试,重点以及各项流程

之前在性能测试学习路线里&#xff0c;提到过《软件性能测试、分析与调优实践之路》这本书。 昨天看到之前自己记的读书笔记&#xff0c;整理一下发出来&#xff0c;希望对读者有所帮助。 网上关于性能测试的文章大多数时间比较久远&#xff0c;或者知识点比较散&#xff0c;…

南大一作!科学家发现全新量子态 | Nature速递

光子盒研究院 马萨诸塞大学助理教授Tigran Sedrakyan在内的一个物理学家团队最近在《自然》杂志上宣布&#xff0c;他们已经发现了一种新的物质阶段——“手性玻色液态(chiral Bose-liquid state)”&#xff0c;这一突破为理解物理世界本质的古老努力开辟了一条全新道路。 团队…

【目标跟踪】MOT数据集GroundTruth可视化

MOT数据集格式简介 MOT15数据集下载&#xff1a;https://pan.baidu.com/s/1foGrBXvsanW8BI4eybqfWg?pwd8888 以下为一行gt示例&#xff1a; 1,1,1367,393,73,225,1,-1,-1,-1 各列数据对应含义如下 <frame>,<id>,<bb_left>,<bb_top>,<bb_width&g…