【探索 Kubernetes|容器基础进阶篇 系列 3】容器进程的文件系统

news2025/1/12 16:09:12

文章目录

  • 系列文章目录
  • 👹 关于作者
  • 一、回顾
  • 二、容器进程的文件系统是什么样子的?
    • rootfs
    • 一致性
      • 解决应用依赖关系
      • 解决复用性
  • 三、OverlayFS 联合文件系统
    • 先决条件
    • overlay2 驱动程序如何工作
      • 结构图
      • 探索含义-磁盘上的镜像层和容器层
        • 镜像层
        • 容器层
  • 四、overlay2 容器读写如何工作
    • 只读层
      • 读取文件
    • 可读写层
      • 修改文件和目录
  • 总结
  • ✊ 最后
  • 参考

在这里插入图片描述

系列文章目录


【云原生-深入理解Kubernetes-1】容器的本质是进程
【云原生-深入理解Kubernetes-2】容器 Linux Cgroups 限制



👹 关于作者


大家好,我是秋意零。

😈 CSDN作者主页

  • 😎 博客主页

👿 简介

  • 👻 普通本科生在读
  • 在校期间参与众多计算机相关比赛,如:🌟 “省赛”、“国赛”,斩获多项奖项荣誉证书
  • 🔥 各个平台,秋意零 账号创作者
  • 🔥 云社区 创建者
点赞、收藏+关注下次不迷路!

欢迎加入云社区


一、回顾

上一章我们了解了 Linux Cgroups 限制,容器是如何使用这个 Linux Cgroups 来达到限制这个容器进程的。

二、容器进程的文件系统是什么样子的?

容器中 Namespace 的作用时 “隔离”,让容器进程只能看到自己这片小空间;Linux Cgroups 的作用时 “限制”,它给这片小空间修筑了一圈的围墙。这样进程就被放在了一个与世隔绝的房间里。这时候我们有了房间,房间有了墙,那我们房间的地基是什么呢?

  • 说白了就是,容器进程的文件系统是什么样子的?

1、可能你立刻就能想到,这一定是一个关于 Mount Namespace 的问题:容器里的应用进程,理应看到一份完全独立的文件系统。这样,它就可以在自己的容器目录(比如 /tmp)下进行操作,而完全不会受宿主机以及其他容器的影响。
2、即使开启了 Mount Namespace ,容器进程看到的文件系统也跟宿主机完全一样。

  • Mount Namespace 修改的,是容器进程对文件系统“挂载点”的认知。
  • 所以只有“挂载”这个操作之后,就是执行 mount 命令之后,进程的视图才能被修改。在挂载之前,新创建的容器会直接继承宿主机的各个挂载点。

Mount Namespace 跟其他 Namespace 的使用略有不同的地方:它对容器进程视图的改变,一定是伴随着挂载操作(mount)才能生效。

rootfs

为了使容器有一个自己独立的文件系统,我们可以在容器进程启动之前重新挂载它的根目录 “/”,由于 Mount Namespace 存在,这个挂载对宿主机是不可见的,容器进程可以在这个文件系统中随心所欲。

Linux 系统中,可以使用有一个名为 chroot 命令来完成上诉的操作。chroot 命令是 “change root directory” 的缩写,chroot 是一个系统调用,可以更改一个进程所能看到的根目录。

chroot 命令语法:

chroot [OPTION] NEWROOT [COMMAND [ARG]...]
如果没有给出任何命令,默认:/bin/sh -i)。

这个挂载在容器根目录上、用来为容器进程提供文件系统,就是所谓的“容器镜像”。它还有一个更为专业的名字,叫作:rootfs(根文件系统)

一个最常见的 rootfs,或者说容器镜像,会包括如下目录和文件,比如 /bin,/etc,/proc 等,而你进入容器之后执行的 /bin/bash,就是/bin目录下的可执行文件,与宿主机的 /bin/bash 完全不同。

$ ls /
bin  boot  dev  etc  home  lib  lib64  media  mnt  opt  proc  root  run  sbin  srv  sys  tmp  usr  var

现在来看,容器最核心的原理就是为 “待” 创建的容器进程,执行下列三个步骤:

  • 1.启用 Linux Namespace;
  • 2.设置 Cgroups ;
  • 3.切换进程的根目录(chroot);

这样,一个完整的容器就诞生了。

一致性

rootfs 只是一个操作系统所包含的文件、配置和目录,并不包括操作系统内核。在 Linux 操作系统中,这两部分(操作系统、文件目录)是分开存放的,操作系统只有在开机启动时才会加载指定版本的内核镜像。这也说明了 rootfs 只有操作系统的 “身体”,没有操作系统的 “灵魂”。

rootfs 文件系统有一个重要特性:一致性

由于 rootfs 里打包的不只是应用,而是整个操作系统的文件和目录,也就意味着,应用以及它运行所需要的所有依赖,都被封装在了一起。

解决应用依赖关系

对于一个应用来说,操作系统本身才是它运行所需要的最完整的“依赖库”。
有了容器镜像 (rootfs)“打包操作系统的身体” 的能力,这个最基础的依赖环境也变成了应用沙盒的一部分,这也赋予了容器所谓的一致性: 无论是在本地、云端或者还是任何一个地方的机器上,用户只要解压打包好的容器镜像,那么这个应用运行所需要的完整的执行环境就被重现出来了。

这种深入到操作系统级别的运行环境一致性,打通了应用在本地开发和远端执行环境之间难以逾越的鸿沟。

解决复用性

这时出现了一个棘手的问题: 难道每次开发一个应用,或升级现有的应用,都要重复制作一次 rootfs 吗?

比如,我现在用 Centos 操作系统的 ISO 做了一个 rootfs,然后又在里面安装了 Java 环境,用来部署我的 Java 应用。那么,我的另一个同事在发布他的 Java 应用时,希望能够直接使用我安装过 Java 环境的 rootfs,而不是重复这个流程。

  • 一种比较直观的解决办法是,我在制作 rootfs 的时候,每做一步“有意义”的操作,就保存一个 rootfs 出来, 这样其他同事就可以按需求去用他需要的 rootfs 了。

  • 但是,这个解决办法并不具备推广性。原因在于,一旦你的同事们修改了这个 rootfs,新旧两个 rootfs 之间就没有任何关系了。这样做的结果就是极度的碎片化。

  • 那么,既然这些修改都基于一个旧的 rootfs,我们能不能以增量的方式去做这些修改呢? 答案当然是肯定的。这样做的好处是,所有人都只需要维护相对于 base rootfs (基础 rootfs)修改的增量内容, 而不是每次修改都制造一个“fork”(分支)。

三、OverlayFS 联合文件系统

Docker 镜像,引入了层(layer)的概念。用户制作镜像的每一步操作,都会生成一个层,也就是一个增量 rootfs。这个操作使用的是:联合文件系统(OverlayFS ),也叫 overlay2。

OverlayFS 是一个现代联合文件系统。将 Linux 内核驱动程序称为 OverlayFS,将 Docker 存储驱动程序称为 overlay2。

OverlayFS 最主要的功能是将多个不同位置的目录联合挂载(union mount)到同一个目录下。

比如,我现在有两个目录 A 和 B,A 目录下的文件 a、b、c ,B 目录下的文件 c、d、e:

$ tree A
A
├── a
├── b
└── c
$ tree B
B
├── c
├── d
└── e
  • 然后,我使用联合挂载的方式,将这两个目录挂载到一个公共的目录 C 上
  • 这时,我再查看目录 C 的内容,就能看到目录 A 和 B 下的文件被合并到了一起。可以看到,C 目录里,有 a、b、c、d、e 五个文件,并且 c 文件只要一份,这就是合并的含义。如果你在 C 目录对 a、b、c、d、e 文件修改,这个修改会对应到 A、B 目录当中生效。
$ tree C
C
├── a
├── b
└── c
├── d
└── e

先决条件

OverlayFS 是推荐的存储驱动程序,满足以下先决条件,则支持:

  • 4.0 或更高版本的 Linux 内核,或使用 3.10.0-514 或更高版本内核的 RHEL 或 CentOS。
  • 该 overlay2 驱动程序在后备文件系统上受支持 xfs,但仅在 d_type=true 启用的情况下。用于 xfs_info 验证该 ftype 选项是否设置为 1。要正确格式化 xfs 文件系统,请使用标志 -n ftype=1.
  • 更改存储驱动程序会使本地系统上的现有容器和图像无法访问。docker save 在更改存储驱动程序之前保存镜像。

docker info 查看存储驱动信息:

$ docker info
...
...
Storage Driver: overlay2
  Backing Filesystem: xfs
  Supports d_type: true
  Using metacopy: false
  Native Overlay Diff: true
  userxattr: false
...
...

Docker 使用 overlary2 存储驱动程序,会自动创建 lowerdir、upperdir、merged 和 workdir覆盖挂载结构体。

OverlayFS 在单个 Linux 主机上将两个目录分层,并将它们呈现为单个目录,这些目录称为层(layer),两个目录统一为一个目录的过程称为联合挂载(详细过程看上面 两个目录 A 和 B 的例子)。

  • OverlayFS 将下层目录称为:lowerdir
  • OverlayFS 将上层目录称为:upperdir
  • 统一视图通过其 merged 目录展现出来(上层和下层目录的联合挂载内容展现)

overlay2 驱动程序如何工作

结构图

下图显示了 Docker 镜像和 Docker 容器是如何分层的:

  • lowerdir 是镜像层
  • upperdir 是容器层

如果镜像有多层,lowerdir 则使用多个目录。统一视图通过名为 merged 的目录公开,该目录实际上是容器安装位置。该图显示了 Docker 如何构造映射到 OverlayFS 构造。

  • 在镜像层和容器层包含相同文件的情况下,容器层掩盖了镜像层中相同文件的存在。
  • 为了创建容器,overlay2 驱动程序将代表镜像顶层的目录与容器的新目录组合在一起。镜像的图层位于 lowerdirs 叠加层中并且是只读的。容器的新目录是 upperdir 并且是可写的。

在这里插入图片描述

探索含义-磁盘上的镜像层和容器层

镜像层

使用 docker pull nginx 命令拉取下载镜像后,可以看到 nginx 镜像有 6 层 Docker 映像,对应到磁盘上是在 /var/lib/docker/overlay2 目录下。

注意:/var/lib/docker/ 目录是 Docker 的根目录,由 Docker 管理,不要操作其中的文件和目录。

$ docker pull nginx
Using default tag: latest
latest: Pulling from library/nginx
9e3ea8720c6d: Pull complete
bf36b6466679: Pull complete
15a97cf85bb8: Pull complete
9c2d6be5a61d: Pull complete
6b7e4a5c7c7a: Pull complete
8db4caa19df8: Pull complete
Digest: sha256:480868e8c8c797794257e2abd88d0f9a8809b2fe956cbfbc05dcc0bca1f7cd43
Status: Downloaded newer image for nginx:latest
docker.io/library/nginx:latest

可以使用 docker image inspect 命令查看镜像的分层以及结构体
在这里插入图片描述

可以看到 overlay2 目录下自动创建了 6 个目录。镜像层 ID 与目录 ID 不对应。

在这里插入图片描述
目录 l (小写的 L),包含作为符号链接的缩短层标识符。这些标识符用于避免达到命令参数的字符长度限制(比如 mount)

在这里插入图片描述

镜像层最底层包含一个名为 diff 的目录,包含该镜像层(lowerdir)的内容;以及一个名为 link 的文件,其中包含该 image 层(layer)缩短标识符的名称。

[root@test_2 overlay2]# cd /var/lib/docker/overlay2/
[root@test_2 overlay2]# ls  228b2f89b5e4316b9b613fc6233551a96e64f51e827972caf86acb82338c7fdb/
committed  diff  link
[root@test_2 overlay2]# ls  228b2f89b5e4316b9b613fc6233551a96e64f51e827972caf86acb82338c7fdb/diff/
bin  boot  dev  etc  home  lib  lib64  media  mnt  opt  proc  root  run  sbin  srv  sys  tmp  usr  var
[root@test_2 overlay2]# cat 228b2f89b5e4316b9b613fc6233551a96e64f51e827972caf86acb82338c7fdb/link
2L2KGYQSG5H43HK6LRJOT7TU4J

镜像层第二低层和每个更高层包含一个名为 lower 的文件(里面记录了镜像层每层的缩短标识符的名称);一个名为 diff 的目录(其中包含其内容);还包含一个 merged 目录(其中包含其父层和自身的统一内容);以及一个 work 目录 (OverlayFS 内部使用的目录);最后一个 link 文件,其中包含该 image 层(layer)缩短标识符的名称。

$ ls /var/lib/docker/overlay2/5605b29d1d7269f11acb3653a8032299b58ca7d111e43dd215fab660851b114c/
committed  diff  link  lower  work

$ ll /var/lib/docker/overlay2/5605b29d1d7269f11acb3653a8032299b58ca7d111e43dd215fab660851b114c/diff
total 0
drwxr-xr-x 2 root root 41 May  4 03:51 docker-entrypoint.d


# 记录了镜像层每层的缩短标识符的名称
 $ cat /var/lib/docker/overlay2/5605b29d1d7269f11acb3653a8032299b58ca7d111e43dd215fab660851b114c/lower
l/NR7U3COVTPVL3XSBKQ77AYXAMR:l/656UDNBIOMRQG4UU6VGTOPQVMT:l/BJ6JTE7P4WDJROD7M6R56HDZ7G:l/DIKKGXFOP6YWKBZL5SRAQLG3SR:l/2L2KGYQSG5H43HK6LRJOT7TU4J

# 验证 lower 文件内容
$ ll /var/lib/docker/overlay2/l/
total 0
lrwxrwxrwx 1 root root 72 May 23 14:44 2L2KGYQSG5H43HK6LRJOT7TU4J -> ../228b2f89b5e4316b9b613fc6233551a96e64f51e827972caf86acb82338c7fdb/diff
lrwxrwxrwx 1 root root 72 May 23 14:44 656UDNBIOMRQG4UU6VGTOPQVMT -> ../7d85f043da224ace0401e97516cf9b8c63cfac6e9804d5f47b3d0f2fda2e9c11/diff
lrwxrwxrwx 1 root root 72 May 23 14:44 BJ6JTE7P4WDJROD7M6R56HDZ7G -> ../2fd591e59cfa565d2377d074224fb823f09917015b9ce3f46d1285f958dfb7fe/diff
lrwxrwxrwx 1 root root 72 May 23 14:44 DIKKGXFOP6YWKBZL5SRAQLG3SR -> ../b1c6e8fcd75408f47820cab5e2bac117275d23deae5723489a4a6549fced8d45/diff
lrwxrwxrwx 1 root root 72 May 23 14:44 MFPTI6FPG5SCBEN4Q7NFQLO2YO -> ../5605b29d1d7269f11acb3653a8032299b58ca7d111e43dd215fab660851b114c/diff
lrwxrwxrwx 1 root root 72 May 23 14:44 NR7U3COVTPVL3XSBKQ77AYXAMR -> ../eedf9b88406b4323a634400b593c74be86c9e774ea7df8191c9f395a59f00c3d/diff

容器层

容器层也存在于 Docker 主机文件系统的磁盘上,位于 /var/lib/docker/overlay/

[root@test_2 ~]# docker run -idt --name nginx nginx
3345e0df177c94d0f16dfb82918d139937c1e2e3acfc8f1514844f77752cf74d
[root@test_2 ~]#
[root@test_2 ~]# docker ps
CONTAINER ID   IMAGE     COMMAND                  CREATED          STATUS          PORTS     NAMES
3345e0df177c   nginx     "/docker-entrypoint.…"   13 seconds ago   Up 12 seconds   80/tcp    nginx

使用 docker container inspect 命令查看容器层:

可以看到 container 的镜像层(LowerDir)和 image 的镜像层(LowerDir)下面 5 层(layer)一致的,说明这是基于我们拉取下载下来的 nginx 镜像创建的容器。

在这里插入图片描述

查看运行容器的目录:

  • diff 目录:包含容器层(UpperDir)内容
  • link 文件: 其中包含该 image 层(layer)缩短标识符的名称。
  • lower 文件: 记录了镜像层和容器层每层的缩短标识符的名称
  • merged 目录: lowerdir 和 upperdir 目录的联合挂载体现,它包含来自正在运行的容器内的文件系统的视图。
  • work 目录: 容器工作目录
$ ll /var/lib/docker/overlay2/b8925e85fdaa4abff5cfd7f988e2fa08da349b8b983b864b0686b19c0e825d09/
total 8
drwxr-xr-x 5 root root  39 May 23 16:49 diff
-rw-r--r-- 1 root root  26 May 23 16:49 link
-rw-r--r-- 1 root root 202 May 23 16:49 lower
drwxr-xr-x 1 root root  39 May 23 16:49 merged
drwx------ 3 root root  18 May 23 16:49 work
$ ls /var/lib/docker/overlay2/b8925e85fdaa4abff5cfd7f988e2fa08da349b8b983b864b0686b19c0e825d09/diff/
etc  run  var

$ cat /var/lib/docker/overlay2/b8925e85fdaa4abff5cfd7f988e2fa08da349b8b983b864b0686b19c0e825d09/link
WOTO7SJMAF42QFMCPIARE7RE46

$ cat /var/lib/docker/overlay2/b8925e85fdaa4abff5cfd7f988e2fa08da349b8b983b864b0686b19c0e825d09/lower
l/ZFU53D2JEDP4EM5HRKMZ6TID3R:l/MFPTI6FPG5SCBEN4Q7NFQLO2YO:l/NR7U3COVTPVL3XSBKQ77AYXAMR:l/656UDNBIOMRQG4UU6VGTOPQVMT:l/BJ6JTE7P4WDJROD7M6R56HDZ7G:l/DIKKGXFOP6YWKBZL5SRAQLG3SR:l/2L2KGYQSG5H43HK6LRJOT7TU4J

$ ls /var/lib/docker/overlay2/b8925e85fdaa4abff5cfd7f988e2fa08da349b8b983b864b0686b19c0e825d09/merged
bin  boot  dev  docker-entrypoint.d  docker-entrypoint.sh  etc  home  lib  lib64  media  mnt  opt  proc  root  run  sbin  srv  sys  tmp  usr  var

$ ll /var/lib/docker/overlay2/b8925e85fdaa4abff5cfd7f988e2fa08da349b8b983b864b0686b19c0e825d09/work/
total 0
d--------- 2 root root 6 May 24 10:42 work

使用 mount 命令 ,查看将存储驱动程序与 Docker 一起使用时存在的挂载 overlay(容器运行时才会看到挂载 merged 目录)。括号开头内容: rw ,表示挂载是可读写的。

可以看到 overlay 联合挂载的目录是 : /var/lib/docker/overlay2/b8925e85fdaa4abff5cfd7f988e2fa08da349b8b983b864b0686b19c0e825d09/merged ,说明了这就是容器的根文件系统(rootfs),并且这是由 lowerdir 、upperdir、workdir 三个目录联合挂载起来的,同时这里 mount 使用了每层的缩短标识符的名称,避免达到命令参数的字符长度限制。

在这里插入图片描述

四、overlay2 容器读写如何工作

还是把上面的结构图拿过来
在这里插入图片描述

只读层

通过上面的讲述,大概也已经了解了,只读层是我们镜像层(lowerdir)。

读取文件

考虑三种情况,其中文件在镜像层和容器层同时存在使用覆盖进行读取访问。

  • 文件在容器层中不存在: 如果容器打开一个文件进行读取访问,而这个文件在容器中(upperdir)不存在,则从镜像中(lowerdir)读取。这会产生非常小的性能开销。
  • 文件存在容器层中: 如果容器打开一个文件进行读取访问,而这个文件在容器中(upperdir)存在,那么就直接读取,不在镜像中(lowerdir)读取。
  • 文件同时存在于镜像层和容器层: 如果容器打开一个文件进行读取访问,而这个文件同时在镜像层和容器层存在,容器层 ( upperdir) 中的文件掩盖镜像层 (lowerdir) 中同名的文件,则读取容器层中的版本。

可读写层

可读写层是我们容器层(upperdir)。

修改文件和目录

  • 1.第一次写入文件: 容器第一次写入文件时,容器中 (upperdir) 不存在该文件。驱动程序 overlay2 执行 copy_up 操作将文件从镜像层 ( lowerdir) 复制到容器层 ( upperdir)。

    OverlayFS 工作在文件级别而不是块级别。这意味着所有 OverlayFS copy_up 操作都会复制整个文件,即使文件非常大并且只修改了一小部分。这会对容器写入性能产生显着影响。
    • copy_up 操作仅在第一次写入给定文件时发生。对同一文件的后续写入将针对已复制到容器的文件副本进行操作。
    • OverlayFS 适用于多层。这意味着在具有多层的图像中搜索文件时,性能可能会受到影响。
  • 2.删除文件和目录:
    • 容器中删除文件: 删除镜像层中的文件,会在容器中 (upperdir) 创建一个 whiteout 文件,镜像层(lowerdir )中的文件版本没有被删除(因为是 lowerdir 只读的)。但是 whiteout 文件阻止镜像层对容器层可用。
    • 容器中删除目录: 会在容器中 ( upperdir ) 创建一个不透明的目录。这与 whiteout 文件的工作方式相同,并有效地防止目录被访问,即使它仍然存在于镜像中 ( lowerdir)。这样一看在容器中目录就被删除了。

PS:whiteout 文件是什么?

  • 比如我要删除只读层中(lowerdir 镜像层)的文件,那么这个删除操作实际上是在可读写层创建了一个名叫.wh.foo 的文件。这样,当这两个层被联合挂载之后,foo 文件就会被.wh.foo 文件“遮挡”起来,“消失”了。这个功能,就是“ro+wh”的挂载方式,即只读 +whiteout 的含义。可以形象地把 whiteout 翻译为:“白障”。
  • 3.重命名目录: 调用 rename(2) 操作重命名目录,仅在源路径和目标路径都在顶层时才允许调用。否则,返回 EXDEV 错误(“不允许跨设备链接”)。您的应用程序需要设计为处理EXDEV 并回退到“复制和取消链接”策略。

总结

这里,介绍了 Linux 容器进程文件系统的实现方式,而这种机制,正是我们经常提到的容器镜像,也叫作:rootfs。它只是一个操作系统的所有文件和目录,并不包含内核,所以对比虚拟机的镜像要小的多。

通过结合使用 Mount Namespace 和 rootfs,容器就能够为进程构建出一个完善的文件系统隔离环境。这需要依赖 chroot 和 pivot_root 切换进程根目录的能力。

在 rootfs 根文件系统的基础上,Docker 使用了一个 overlay2 联合文件挂载。并提出了容器镜像中“层”(layer)的概念。

✊ 最后


👏 我是秋意零,欢迎大家一键三连、加入云社区

👋 我们下期再见(⊙o⊙)!!!


参考

参考《深入剖析Kubernetes》作者 张磊
https://docs.docker.com/storage/storagedriver/overlayfs-driver/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/649581.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

动态规划dp —— 26.环绕字符串中唯一的子字符串

1.状态表示 是什么?dp表中里的值所表示的含义就是状态表示 dp[i]表示:以i位置元素为结尾的所有的子串里面,有多少个在base中出现过 2.状态转移方程 dp[i] 等于什么 如果是单个字母的子串,肯定会在base中出现,所以…

一文详解!appium自动化测试

目录 前言: Appinum前置知识 Andriod SDK 元素获取—UI Automator adb命令实践 adb常用命令 小结 Package与Activity Activity页面布局元素 monkey简介 monkey事件 操作事件简介 monkey参数 事件类参数 约束类参数 调试类参数 Monkey参数应用综合案…

生成式AI - 关键技术历史和发展

✈️当谈及生成式人工智能(AI),我们进入了一个令人惊叹的领域,它不仅改变了我们与技术的互动方式,而且极大地推动了人工智能的发展。通过模仿人类创造力和想象力的能力,生成式AI引领着我们走向了全新的可能…

re模块

目录 ❤ 正则表达式 常用正则 字符组 字符 量词 ❤ 正则表达式的使用 . ^ $ * ? { } 字符集[][^] 分组 ()与 或 |[^] 转义符 \ 贪婪匹配 ❤ re模块 常量、属性 常用方法 re.co…

echarts图表 的X轴添加滚动条

1:原图 2:代码 dataZoom [{orient: horizontal,show: scoreShow,//控制滚动条显示隐藏realtime: true, //拖动滚动条时是否动态的更新图表数据height: 5, //滚动条高度start: 0, //滚动条开始位置(共6等份)end: this.endValue,//…

复杂业务系统的通用架构设计法则

一、什么是复杂系统 我们经常提到复杂系统,那么到底什么是复杂系统。我们看下维基的定义:复杂系统(英语:complex system),又称复合系统,是指由许多可能相互作用的组成成分所组成的系统。强调了…

Pytest教程__参数化(10)

pytest参数化有两种方式: mark的parametrize标记:pytest.mark.parametrize(变量名,变量值),其中变量值类型为列表、元组或其它可迭代对象。fixture的params参数:pytest.fixture(params变量值),其中变量值类…

Selenium元素定位方法大全

一、背景 作为当下最流行的web UI自动化测试工具,selenium是很多测试同学入门接触自动化测试时学习的第一个工具。想要自动化操作页面上的内容,元素定位是首先必须要学习的核心知识。 因此本文主要介绍selenium的几种最常用的元素定位方法,…

008、体系架构之SQL 执行流程

SQL 执行流程 读取的执行写入的执行DDL的执行SQL运算SQL解析和编译SQL 层架构SQL 运算分布式 SQL 运算SQL 层架构 读取的执行 元数据的读取 执行器从information_schema当总获取表的元数据信息(table meta),元数据的信息从内存中读取就可以了,因为已经缓存到了info…

Python抓取商品详情方法的几种方法比较

抓取商品详情的方法有很多种,以下是其中几种常见的方法及其优缺点: 1.使用requests库发送HTTP请求,然后解析HTML或JSON格式的数据: 优点:这种方法可以抓取几乎所有网站上的数据,支持GET和POST请求&#xff…

匿名内部类为什么泄漏,Lambda为什么不泄漏

作者:麦客奥德彪 在Android开发中,内存泄露发生的场景其实主要就两点,一是数据过大的问题,而是调用与被调用生命周期不一致问题,对于对象生命周期不一致导致的泄漏问题占90%,最常见的也不好分析的当属匿名内…

一段2个月工作经历没体现,美团背调没通过收回了offer

众所周知,很多公司在面试通过之后还会对求职者进行背景调查,这是企业确认求职者信息真实性的重要途径,具有减少信息不对称、降低用人风险等重要意义。 一般通过背景调查,如果企业了解到求职者劳动关系没有终止、解除、简历造假或…

抖音的外卖服务商申请详细指南!

CKA-外卖服务商对外(5、6双月) 项目背景: 通过资源牵引助力商户交易增长,从组品、内容、流量等方面对客户进行1v1精细化辅导,帮助商户进行运营动作 的优化,以实现双月百万交易额的showcase打造,并以此完成“好商,好品…

面了个00后的测试员,年薪20w问题基本都能回答上,必是刷了不少面试题···

互联网行业竞争是一年比一年严峻,作为测试工程师的我们唯有不停地学习,不断的提升自己才能保证自己的核心竞争力从而拿到更好的薪水,进入心仪的企业(阿里、字节、美团、腾讯等大厂.....) 所以,大家就迎来了…

从云端进行安全日志管理

随着企业变得越来越动态,需要一个灵活且易于访问的日志管理解决方案。Log360 Cloud 从本地和基于云的数据中收集您的网络日志,将其存储在云中,并通过多个实时/自动更新的图形仪表板实时提供网络安全的全面视图。 为什么选择云日志记录 随时…

数据中心交换机和园区交换机有啥区别?

概要 在网络架构中,交换机是一种重要的设备,用于连接计算机、服务器和其他网络设备。随着不同领域的需求,交换机也有多种类型。本文将详细介绍数据中心交换机和园区交换机之间的区别,包括它们的原理和使用场景。 一. 数据中心交换…

16.算法之字符串匹配算法

前言 字符串匹配是我们在程序开发中经常遇见的功能,比如sql语句中的like,java中的indexof,都是用来判断一个字符串是否包含另外一个字符串的。那么,这些关键字,方法,底层算法是怎么实现的么?本节,我们来探…

STM32_智慧农业环境测控系统(附代码)

前段时间进行了说STM32的学习,现在把学习成果共享出来,仅供参考。 实验目标:对环境温度湿度以及光照值进行检测(传感器)和控制(按键)。 硬件资源:STM32开发板、DHT11温湿度传感器和光敏传感器。 #include "st…

uview-ui表单使用总结

官网地址:https://v1.uviewui.com 表单校验的规则注意点: uView自带验证规则 常用的手机号身份证之类的都可以直接用内置校验规则地址 使用方法: this.$u.test.mobile(val)如果是动态配置的表单,使用v-for循环,校验规…

贪心算法原理和案例

目录 ​编辑 贪心算法简介 什么时候使用贪心算法 贪心算法缺陷 贪心算法应用 贪心算法JAVA代码实现 贪心算法简介 贪心算法(又称贪婪算法)Greedy Algorithm 是一种不断做出局部最优解的选择,最终期望得到全局最优解的算法。 简单地说&am…