LeetCode647. 回文子串
动态规划五部曲:
1,确定dp数组(dp table)以及下标的含义:本题如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,会发现很难找到递归关系。dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。所以我们要看回文串的性质。 如图:
我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
2,确定递推公式:在确定递推公式时,就要分析如下几种情况。整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
- 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
- 情况二:下标i 与 j相差为1,例如aa,也是回文子串
- 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
3,dp数组如何初始化:dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。所以dp[i][j]初始化为false。
4,确定遍历顺序:遍历顺序可有有点讲究了。首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:
如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。
5,举例推导dp数组:举例,输入:"aaa",dp[i][j]状态如下:
图中有6个true,所以就是有6个回文子串。注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分。
Java代码如下:
public int countSubstrings(String s) {
char[] chars = s.toCharArray();
int len = chars.length;
boolean[][] dp = new boolean[len][len];
int result = 0;
for (int i = len - 1; i >= 0; i--) {
for (int j = i; j < len; j++) {
if (chars[i] == chars[j]) {
if (j - i <= 1) {
result++;
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) {
result++;
dp[i][j] = true;
}
}
}
}
return result;
}
LeetCode516.最长回文子序列
动态规划五部曲:
1,确定dp数组(dp table)以及下标的含义:dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。
2,确定递推公式:在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;
如图:
如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。加入s[j]的回文子序列长度为dp[i + 1][j]。加入s[i]的回文子序列长度为dp[i][j - 1]。那么dp[i][j]一定是取最大的,即:
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
3,dp数组如何初始化:首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。
4,确定遍历顺序:从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:
所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的。j的话,可以正常从左向右遍历。
5,举例推导dp数组:输入s:"cbbd" 为例,dp数组状态如图:
红色框即:dp[0][s.size() - 1]; 为最终结果。
Java代码如下:
public int longestPalindromeSubseq(String s) {
int len = s.length();
int[][] dp = new int[len + 1][len + 1];
for (int i = len - 1; i >= 0; i--) {
dp[i][i] = 1;
for (int j = i + 1; j < len; j++) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], Math.max(dp[i][j], dp[i][j - 1]));
}
}
}
return dp[0][len - 1];
}