OpenGL 坐标系统

news2025/1/13 10:17:46

1.简介

OpenGL希望在每次顶点着色器运行后,我们可见的所有顶点都为标准化设备坐标。也就是说,每个顶点的xyz坐标都应该在-1.01.0之间,超出这个坐标范围的顶点都将不可见。将坐标变换为标准化设备坐标,接着再转化为屏幕坐标的过程通常是分步进行的,也就是类似于流水线那样子。在流水线中,物体的顶点在最终转化为屏幕坐标之前还会被变换到多个坐标系统,总共有5个不同的坐标系统:

  • 局部空间(Local Space,或者称为物体空间(Object Space))
  • 世界空间(World Space)
  • 观察空间(View Space,或者称为视觉空间(Eye Space))
  • 裁剪空间(Clip Space)
  • 屏幕空间(Screen Space)

为了将坐标从一个坐标系变换到另一个坐标系,我们需要用到几个变换矩阵,最重要的几个分别是模型(Model)、观察(View)、投影(Projection)三个矩阵。

  • 局部坐标:是对象相对于局部原点的坐标,也是物体起始的坐标。
  • 世界空间坐标:世界空间坐标是处于一个更大的空间范围的,这些坐标相对于世界的全局原点,它们会和其它物体一起相对于世界的原点进行摆放。
  • 观察空间坐标:每个坐标都是从摄像机或者说观察者的角度进行观察的。
  • 裁剪坐标:裁剪坐标会被处理至-1.0到1.0的范围内,并判断哪些顶点将会出现在屏幕上。
  • 屏幕坐标:我们将使用一个叫做视口变换(Viewport Transform)的过程。视口变换将位于-1.0到1.0范围的坐标变换到由glViewport函数所定义的坐标范围内。最后变换出来的坐标将会送到光栅器,将其转化为片段。

2.局部空间

局部空间是指物体所在的坐标空间,即对象最开始所在的地方。前面三角形顶点是被设定在-0.5到0.5的坐标范围中,(0, 0)是它的原点。这些都是局部坐标。

3.世界空间

是指顶点相对于(游戏)世界的坐标,如果你希望将物体分散在世界上摆放(特别是非常真实的那样),这就是你希望物体变换到的空间。物体的坐标将会从局部变换到世界空间;该变换是由模型矩阵(Model Matrix)实现的。模型矩阵是一种变换矩阵,它能通过对物体进行位移、缩放、旋转来将它置于它本应该在的位置或朝向。

4.观察空间

观察空间经常被人们称之OpenGL的摄像机(Camera),观察空间是将世界空间坐标转化为用户视野前方的坐标而产生的结果。因此观察空间就是从摄像机的视角所观察到的空间。而这通常是由一系列的位移和旋转的组合来完成,平移/旋转场景从而使得特定的对象被变换到摄像机的前方。这些组合在一起的变换通常存储在一个观察矩阵(View Matrix)里。

5.裁剪空间

在一个顶点着色器运行的最后,OpenGL期望所有的坐标都能落在一个特定的范围内,且任何在这个范围之外的点都应该被裁剪掉(Clipped)。被裁剪掉的坐标就会被忽略,所以剩下的坐标就将变为屏幕上可见的片段。

为了将顶点坐标从观察变换到裁剪空间,我们需要定义一个投影矩阵(Projection Matrix),它指定了一个范围的坐标,比如在每个维度上的-1000到1000。投影矩阵接着会将在这个指定的范围内的坐标变换为标准化设备坐标的范围(-1.0, 1.0)。所有在范围外的坐标不会被映射到在-1.0到1.0的范围之间,所以会被裁剪掉。在上面这个投影矩阵所指定的范围内,坐标(1250, 500, 750)将是不可见的,这是由于它的x坐标超出了范围,它被转化为一个大于1.0的标准化设备坐标,所以被裁剪掉了。

6.正射投影

正射投影矩阵定义了一个类似立方体的平截头箱,它定义了一个裁剪空间,在这空间之外的顶点都会被裁剪掉。

上面的平截头体定义了可见的坐标,它由由宽、高、近(Near)平面和远(Far)平面所指定。任何出现在近平面之前或远平面之后的坐标都会被裁剪掉。

要创建一个正射投影矩阵,我们可以使用GLM的内置函数glm::ortho

glm::ortho(0.0f, 800.0f, 0.0f, 600.0f, 0.1f, 100.0f);
  • 前两个参数指定了平截头体的左右坐标
  • 第三和第四参数指定了平截头体的底部和顶部。通过这四个参数我们定义了近平面和远平面的大小,
  • 然后第五和第六个参数则定义了近平面和远平面的距离。这个投影矩阵会将处于这些x,y,z值范围内的坐标变换为标准化设备坐标。 

7.透视投影

如果你曾经体验过实际生活给你带来的景象,你就会注意到离你越远的东西看起来更小。这个奇怪的效果称之为透视(Perspective)。

正如你看到的那样,由于透视,这两条线在很远的地方看起来会相交。这正是透视投影想要模仿的效果,它是使用透视投影矩阵来完成的。

在GLM中可以这样创建一个透视投影矩阵:

glm::mat4 proj = glm::perspective(glm::radians(45.0f), 
                    (float)width/(float)height, 0.1f, 100.0f);

  • 第一个参数定义了fov的值,它表示的是视野(Field of View),并且设置了观察空间的大小。如果想要一个真实的观察效果,它的值通常设置为45.0f,但想要一个末日风格的结果你可以将其设置一个更大的值。
  • 第二个参数设置了宽高比,由视口的宽除以高所得。
  • 第三和第四个参数设置了平截头体的平面。我们通常设置近距离为0.1f,而远距离设为100.0f。所有在近平面和远平面内且处于平截头体内的顶点都会被渲染。 

我们为上述的每一个步骤都创建了一个变换矩阵:模型矩阵、观察矩阵和投影矩阵。一个顶点坐标将会根据以下过程被变换到裁剪坐标:

注意矩阵运算的顺序是相反的(记住我们需要从右往左阅读矩阵的乘法)。最后的顶点应该被赋值到顶点着色器中的gl_Position,OpenGL将会自动进行透视除法和裁剪。

8.示例

3D效果

#ifndef MYOPENGLWIDGET_H
#define MYOPENGLWIDGET_H
#include <QOpenGLWidget>
#include <QOpenGLFunctions_3_3_Core>
#include <QOpenGLTexture>
#include <QImage>
#include <QOpenGLShaderProgram>

class MyOpenGLWidget : public QOpenGLWidget,public QOpenGLFunctions_3_3_Core
{
public:
    MyOpenGLWidget(QWidget *parent = nullptr);

protected:
    virtual void initializeGL();
    virtual void paintGL();
    virtual void resizeGL(int w, int h);

private:
    QOpenGLTexture *m_wall;

    QOpenGLTexture *m_face;

    QOpenGLShaderProgram *m_program;
};

#endif // MYOPENGLWIDGET_H




#include "myopenglwidget.h"
#include <QMatrix4x4>
#include <QTime>
#include <QTimer>
#include <math.h>
#include <QVector3D>
#include <QVector>

float vertices[] = {
    //坐标                //纹理坐标
    -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,
     0.5f, -0.5f, -0.5f,  1.0f, 0.0f,
     0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
     0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
    -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
    -0.5f, -0.5f, -0.5f,  0.0f, 0.0f,

    -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
     0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
     0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
     0.5f,  0.5f,  0.5f,  1.0f, 1.0f,
    -0.5f,  0.5f,  0.5f,  0.0f, 1.0f,
    -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,

    -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
    -0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
    -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
    -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
    -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
    -0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

     0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
     0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
     0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
     0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
     0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
     0.5f,  0.5f,  0.5f,  1.0f, 0.0f,

    -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,
     0.5f, -0.5f, -0.5f,  1.0f, 1.0f,
     0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
     0.5f, -0.5f,  0.5f,  1.0f, 0.0f,
    -0.5f, -0.5f,  0.5f,  0.0f, 0.0f,
    -0.5f, -0.5f, -0.5f,  0.0f, 1.0f,

    -0.5f,  0.5f, -0.5f,  0.0f, 1.0f,
     0.5f,  0.5f, -0.5f,  1.0f, 1.0f,
     0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
     0.5f,  0.5f,  0.5f,  1.0f, 0.0f,
    -0.5f,  0.5f,  0.5f,  0.0f, 0.0f,
    -0.5f,  0.5f, -0.5f,  0.0f, 1.0f
};

GLuint indices[] = {
    0, 1, 3,
    1, 2, 3
};

//顶点着色器语言
const GLchar* vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 position;\n"
"layout (location = 1) in vec2 texCoord;\n"
"out vec2 outTexCoord;\n"
"uniform mat4 model;\n"
"uniform mat4 view;\n"
"uniform mat4 projection;\n"
"void main()\n"
"{\n"
"gl_Position = projection * view * model * vec4(position,1.0);\n"
"outTexCoord = texCoord;\n"
"}\n\0";

//片段着色器语言
//texture函数会使用之前设置的纹理参数对相应的颜色值进行采样
//mix按一定的比例,混合两个纹理颜色
const GLchar* fragmentShaderSource = "#version 330 core\n"
"out vec4 color;\n"
"uniform sampler2D ourTexture1;\n"
"uniform sampler2D ourTexture2;\n"
"in vec2 outTexCoord;\n"
"void main()\n"
"{\n"
"color = mix(texture(ourTexture1, outTexCoord),texture(ourTexture2, vec2(outTexCoord.x, outTexCoord.y)),0.45);\n"
"}\n\0";

GLuint VBO, VAO,EBO;
GLuint shaderProgram;

QVector<QVector3D> cubePositions = {
  QVector3D( 0.0f,  0.0f,  0.0f),
  QVector3D( 2.0f,  5.0f, -15.0f),
  QVector3D(-1.5f, -2.2f, -2.5f),
  QVector3D(-3.8f, -2.0f, -12.3f),
  QVector3D( 2.4f, -0.4f, -3.5f),
  QVector3D(-1.7f,  3.0f, -7.5f),
  QVector3D( 1.3f, -2.0f, -2.5f),
  QVector3D( 1.5f,  2.0f, -2.5f),
  QVector3D( 1.5f,  0.2f, -1.5f),
  QVector3D(-1.3f,  1.0f, -1.5f)
};

MyOpenGLWidget::MyOpenGLWidget(QWidget *parent)
    : QOpenGLWidget(parent)
{
}

void MyOpenGLWidget::initializeGL()
{
    initializeOpenGLFunctions();

    m_program = new QOpenGLShaderProgram();
    m_program->addShaderFromSourceCode(QOpenGLShader::Vertex,vertexShaderSource);
    m_program->addShaderFromSourceCode(QOpenGLShader::Fragment,fragmentShaderSource);
    m_program->link();

    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);

    glBindVertexArray(VAO);//绑定VAO
    glBindBuffer(GL_ARRAY_BUFFER, VBO);//顶点缓冲对象的缓冲类型是GL_ARRAY_BUFFER
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//把顶点数据复制到缓冲的内存中GL_STATIC_DRAW :数据不会或几乎不会改变。

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);

    glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
    glEnableVertexAttribArray(1);

    glBindBuffer(GL_ARRAY_BUFFER, 0);

    glGenBuffers(1, &EBO);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    glBindVertexArray(0);//解绑VAO

    m_wall = new QOpenGLTexture(QImage("./container.jpg").mirrored());
    m_face = new QOpenGLTexture(QImage("./awesomeface.png").mirrored());

    m_program->bind();
    m_program->setUniformValue("ourTexture1",0);
    m_program->setUniformValue("ourTexture2",1);

    //设置透视投影矩阵
    QMatrix4x4 projection;
    projection.perspective(45,(float)(width())/(height()),0.1,100);
    m_program->setUniformValue("projection",projection);

}

void MyOpenGLWidget::paintGL()
{
    glClearColor(0.2f,0.3f,0.3f,1.0f);
    glEnable(GL_DEPTH_TEST);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    QMatrix4x4 model;
    QMatrix4x4 view;

    view.translate(0,0,-3);

    m_program->bind();

    glBindVertexArray(VAO);//绑定VAO

    m_wall->bind(0);
    m_face->bind(1);

    //设置观察矩阵
    m_program->setUniformValue("view",view);

    foreach(auto pos , cubePositions)
    {
        //设置为单位矩阵
        model.setToIdentity();
        //平移
        model.translate(pos);
        //设置模型矩阵
        m_program->setUniformValue("model",model);
        glDrawArrays(GL_TRIANGLES,0,36);
    }

}

void MyOpenGLWidget::resizeGL(int w, int h)
{

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/628994.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在职读研探索更大的世界,中国人民大学与加拿大女王大学金融硕士给予你前行的力量

生活总是在变化中前进&#xff0c;这个世界从未停止过为我们带来新的挑战和机遇。职场中我们偶尔会感到困惑和迷茫&#xff0c;不知道该怎么去做。但我们可以选择去发现更大的世界&#xff0c;重新定义自己。中国人民大学与加拿大女王大学金融硕士项目给予你前行的力量。 知识…

建站教程:阿里云服务器安装宝塔面板搭建网站全流程

使用阿里云服务器安装宝塔面板教程&#xff0c;阿里云服务器网以CentOS操作系统为例&#xff0c;安装宝塔Linux面板&#xff0c;先远程连接到云服务器&#xff0c;然后执行宝塔面板安装命令&#xff0c;系统会自动安装宝塔面板&#xff0c;安装完成后会返回面板地址、账号和密码…

浅谈集群,分布式和微服务的区别

一.概念 集群&#xff1a; 分布式&#xff1a; 微服务&#xff1a; 二.区别 集群是多台服务器一起处理同一个业务,可以使用负载均衡使得每一个服务器的负载相对平衡,集群中的一台服务器出现问题,该服务器所负责的业务可以由其他的服务器代为处理。直白一点:就是只有一个项目&…

深入理解PE,手工制作64位PE程序

深入理解PE&#xff0c;手工制作64位PE程序 文章目录 深入理解PE&#xff0c;手工制作64位PE程序手工构建64位PE程序制作准备创建一个空文件Dos头 IMAGE_DOS_HEADERNT头 IMAGE_NT_HEADERS文件头 IMAGE_FILE_HEADER可选头 IMAGE_OPTIONAL_HEADER64 节区头 IMAGE_SECTION_HEADER.…

基本 SQL 命令 、重要的 SQL命令、SQL 约束 及 SQL语句 的 执行顺序

学习目标&#xff1a; 学习目标如下&#xff1a; SQL语句执行顺序 学习内容&#xff1a; 基本 SQL 命令&#xff1a; FROMONJOINWHEREGROUP BYAGG_FUNCWITHHAVINGSELECT 从数据库中提取数据UNIONDISTINCTORDER BY 排序LIMIT 重要的sql命令&#xff1a; 1、SELECT - 从数据…

Java --- springboot3之嵌入式容器原理

目录 一、嵌入式容器 1.1、自动配置原理 1.2、相关操作 二、切换服务器 一、嵌入式容器 Servlet容器&#xff1a;管理、运行Servlet组件&#xff08;Servlet、Filter、Listener&#xff09;的环境&#xff0c;一般指服务器 1.1、自动配置原理 1、SpringBoot 默认嵌入Tomc…

打死也要学完的vue

目录 创建一个 Vue 应用# 应用实例# 根组件# 挂载应用# DOM 中的根组件模板# 应用配置# 多个应用实例# 模板语法# 文本插值# 原始 HTML# Attribute 绑定# 简写# 布尔型 Attribute# 动态绑定多个值# 使用 JavaScript 表达式# 仅支持表达式# 调用函数# 受限的全…

华为OD机试真题B卷 Java 实现【计算礼品发放的最小分组数目】,附详细解题思路

一、题目描述 又到了一年的末尾&#xff0c;项目组让小明负责新年晚会的小礼品发放工作。 为使得参加晚会的同时所获得的小礼品价值相对平衡&#xff0c;需要把小礼品根据价格进行分组&#xff0c;但每组最多只能包括两件小礼品&#xff0c;并且每个分组的价格总和不能超过一…

Calling Add-ins (C#)

本范例展示如何通过实现 IEdmAddIn5::GetAddInInfo 和 IEdmAddIn5::OnCmd 去创建一个当用户在数据卡中点击一个按钮时被调用的Visual C# add-in程序。这个add-in在用户浏览文件时打开一个对话框. add-in 将所选文件的路径复制到 文件的数据卡。 注意&#xff1a; 因为 SOLIDWO…

【图书推荐 | 12】前端系列

【赠书活动第十二期 】 图书推荐 本期书籍&#xff1a;前端系列 图书列表&#xff1a; Vue.js核心技术解析Nuxt.js实战Nuxt.js Web开发实战HTML5CSS 从入门到精通Flutter2 开发实例精解Electron项目开发实战 Vue.js核心技术解析 Nuxt.js实战 Nuxt.js Web开发实战 HTML5CSS 从入…

算法与数据结构基数排序

一、基数排序算法示意图 下方的基数排序算法的实现是利用“桶”来实现的&#xff0c;首先我们创建10个桶&#xff0c;然后按照基数入桶&#xff0c;基数的取值是从数字的低位到高位以此取值。我们还是以[62, 88, 58, 47, 62, 35, 73, 51, 99, 37, 93]这个序列为例&#xff0c;…

PINN学习与实验之拟合sin(x)

首先给出数学上的知识。 1. 2. 3. 其次给出PINN最基础的理解与应用说明。 1.PINN中的MLP多层感知机的作用&#xff1f; 答&#xff1a;目的是用来拟合出我们需要的那个 常微分方程&#xff0c;即函数逼近器。 2.PINN中物理信息的作用&#xff1f; 答&#xff1a;用于约束MLP反向…

安利一个我喜欢的博主(鱼皮)的项目----鱼聪明AI

大家好&#xff0c;我是鱼皮的粉丝。今天给大家介绍下他们公司的新朋友 —— 鱼聪明&#xff01; 是不是看上去就像个大聪明哈哈&#xff0c;这其实是他们公司的吉祥物。当然啦&#xff0c;她以后会经常出现在他们的产品家族和周边中~ 比如他们最新上线的 AI 助手网站 —— 鱼…

自动化测试真的会取代手工测试?说这话的人肯定不是干测试的~

在测试行业&#xff0c;一个一直被讨论的问题就是&#xff1a;手工测试没有前途&#xff0c;自动化测试会取代手工测试&#xff1f; 首先说结论&#xff1a;自动化测试不会取代手工测试&#xff0c;这完全是两个维度的事情。为什么不会呢&#xff1f;我们需要从本源上说起。 …

计算机网络期末考试学习记录

1.如果特别想把一个知识点给别人讲懂的话&#xff0c;那自己也会受益很多。 2.我是先讲给自己的&#xff0c;因为我本人也有太多疑问而不问。 3.答案是我自己做出来的&#xff0c;仅供参考。 1.路由器因目的不可达而丢弃的普通IP分组&#xff0c;会向源主机发送(C)报文来报告…

【每日挠头算法(4)】字符串相加|字符串相乘

欢迎~ 一、字符串相加思路&#xff1a;模拟竖式加法具体代码如下&#xff1a; 二、字符串相乘思路&#xff1a;模拟竖式乘法具体代码如下: 总结 一、字符串相加 点我直达~ 思路&#xff1a;模拟竖式加法 1.将两个字符串从右往左开始进行相加&#xff0c;使用一个变量ans表示进…

关于枚举常量手误带来的错误

前言 记录2020年5月30日&#xff0c;肯哥在群里面分享的一个因为手误带来的bug。 问题描述 肯哥原话&#xff1a; 又到了每天的open话题讨论时刻&#xff0c;一起在摸鱼中学点东西&#xff0c;今天我们来聊一个话题&#xff1a;一不小心的手误&#xff0c;代码有时能跑&#xf…

Python集合学习笔记

列表、字典、集合都是可变类型的序列. 集合是没有value的字典s {2, 3, 4, 5, 5, 5, 5, 6, 7, 7} print(s) # {2, 3, 4, 5, 6, 7} 集合中没有相同的元素&#xff0c;元素不能重复print() s1 set(range(6)) print(s1) # {0, 1, 2, 3, 4, 5} lis [2, 5, 8, 5, 8, 4, 9] s2 s…

搜索与图论(acwing算法基础)

文章目录 DFS排列数字n皇后 BFS走迷宫 拓扑序列单链表树与图的深度优先搜索模拟队列有向图的拓扑序列 bellman-ford有边数限制的最短路 spfaspfa求最短路spfa判断负环 FloydFloyd求最短路 PrimPrim算法求最小生成树 KruskalKruskal算法求最小生成树 染色法判定二分图染色法判定…

rabbitmq记录(服务器重启后,RabbitMQ用户丢失)

1.docker运行rabbitmq docker run -d --hostname my-rabbit --name myrabbit -p 15672:15672 -p 5672:5672 rabbitmq 2.进入rabbitmq容器 docker exec -it 3776394dd2b3 /bin/bash 3.开启rabbitmq可视化界面管理 rabbitmq-plugins enable rabbitmq_management 4.添加新用户…