基于深度学习的高精度推土机检测识别系统(PyTorch+Pyside6+YOLOv5模型)

news2024/11/24 10:00:46

摘要:基于深度学习的高精度推土机检测识别系统可用于日常生活中检测与定位推土机目标,利用深度学习算法可实现图片、视频、摄像头等方式的推土机目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括推土机训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本推土机检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度推土机识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载YOLOv5源码库,放到自己电脑的目录,之后打开cmd进入到YOLOv5目录里面,本文演示的目录是:D:\vscode_workspace\yolov5
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的推土机数据集手动标注了推土机这一个类别,数据集总计1224张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的推土机检测识别数据集包含训练集974张图片,验证集250张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。

我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的推土机数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对推土机数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、苹果检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/605932.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

通过location实现几秒后页面跳转

location对象属性 location对象属性 返回值location.href获取或者设置整个URLlocation.host返回主机(域名)www.baidu.comlocation.port 返回端口号,如果未写返回空字符串location.pathname返回路径location.search返回参数location.hash返回…

【SCADA】关于KingSCADA仿真驱动的应用

大家好,我是雷工! 在有些时候我们需要用到虚拟仿真的数据,例如在效果演示时为了有良好的动态效果。在KingSCADA软件中可以通过Simulate驱动作为虚拟设备实现这一功能需求。 下面为大家演示该功能的应用: 一、KingIOServer工程设计…

Go实现跨域Cors中间件

概述 本版本主要实现cors中间件 github 地址:Sgin 欢迎star,将会逐步实现一个go web框架 内容 通过建造者模式创建我们的跨域中间件Cors \ 我们了解到,当使用XMLHttpRequest发送请求时,如果浏览器发现违反了同源策略就会自动加…

StableDiffusion入门教程

目录 介绍模型的后缀ckpt模型&#xff1a;safetensors模型文件夹VAE 模型在哪下载Hugging face:<https://huggingface.co/models>下载SD官方模型文生图模型标签介绍 C站&#xff1a;<https://civitai.com/>筛选模型的类型CheckPoint Type &#xff08;模型的类型&a…

Python学习笔记 - 探索元组Tuple的使用

欢迎各位&#xff0c;我是Mr数据杨&#xff0c;你们的Python导游。今天&#xff0c;我要为大家讲解一段特殊的旅程&#xff0c;它与《三国演义》有关&#xff0c;而我们的主角是元组&#xff08;tuple&#xff09;。 让我们想象这样一个场景&#xff0c;三国演义中的诸葛亮&am…

pandas数据预处理

pandas数据预处理 pandas及其数据结构pandas简介Series数据结构及其创建DataFrame数据结构及其创建 利用pandas导入导出数据导入外部数据导入数据文件 导出外部数据导出数据文件 数据概览及预处理数据概览分析利用DataFrame的常用属性利用DataFrame的常用方法 数据清洗缺失值处…

Cesium教程 (3) 矢量切片mvt-imagery-provider加载

Cesium教程 (3) 矢量切片mvt-imagery-provider加载 目录 0. 矢量切片 1. 开源项目 2. 环境 3. 代码 4. TODO 0. 矢量切片 WMTS&#xff1a;加载最快&#xff0c;图片格式&#xff0c;样式固定&#xff1b; WMS&#xff1a;加载数量大则慢&#xff0c;但可以点击查询等&am…

htmlCSS-----CSS选择器(上)

目录 前言&#xff1a; 1.初级选择器 &#xff08;1&#xff09;ID选择器 &#xff08;2&#xff09;class选择器 &#xff08;3&#xff09;标签选择器 &#xff08;4&#xff09;通配选择器 前言&#xff1a; CSS选择器是CSS页面处理的重要组成部分&#xff0c;前面讲到…

MMPose关键点检测实战

安装教程 https://github.com/TommyZihao/MMPose_Tutorials/blob/main/2023/0524/%E3%80%90A1%E3%80%91%E5%AE%89%E8%A3%85MMPose.ipynb git clone https://github.com/open-mmlab/mmpose.git -b tutorial2023 -b代表切换到某个分支&#xff0c;保证分支和作者的教程一致 ra…

基于SpringBoot+Thymeleaf+Mybatis+Html校园二手交易平台

基于SpringBootThymeleafMybatisHtml校园二手交易平台 一、系统介绍1、系统主要功能&#xff1a;2、环境配置 二、功能展示1.主页(客户)2.登陆&#xff08;客户&#xff09;3.我的购物车(客户)4.我的订单&#xff08;客户&#xff09;5.主页&#xff08;管理员&#xff09;6.订…

mybatisplus数据权限插件学习初探 动态表名更换插件 防止全表更新与删除插件

文章目录 学习链接 mybatisplus数据权限插件学习初探前言案例建表用户表订单表 环境准备UserUserMapperUserMapper.xmlOrdersOrdersMapperOrdersMapper.xml 配置UserTypeEnumUserContextHolderCustomizeDataPermissionHandlerMybatisPlusConfig 测试测试类bossdeptManagerclerk…

Redis通信协议、过期回收策略

Redis通信协议-RESP协议 Redis是一个CS架构的软件&#xff0c;通信一般分两步&#xff08;不包括pipeline和PubSub&#xff09;&#xff1a; 客户端&#xff08;client&#xff09;向服务端&#xff08;server&#xff09;发送一条命令 服务端解析并执行命令&#xff0c;返回…

二级指针骚操作实现链表虚拟头节点

重点是不用像其他文章里那样&#xff0c;用一个普通节点成员变量当头节点&#xff0c;节省一点空间占用&#xff0c;反正我觉得有点骚。就不详细交代技术背景了&#xff0c;简而言之&#xff0c;就是链表中第一个节点前没有节点了&#xff0c;只有一个指向它的指针&#xff0c;…

强化学习基础篇[3]:DQN、Actor-Critic详解

【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项目实现、学术应用项目实现 专栏详细介绍:【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项目实现、学术应…

从实习到秋招成为一名安全工程师,我是怎么做的

前言 借朋友口述总结了安全招聘面试经历分享&#xff0c;希望更多的人看到这篇文&#xff0c;从中得到启发&#xff0c;找到自己心仪的工作。 基本情况 签了字节的三方&#xff0c;秋招终于告一段落。从八月份边实习边准备秋招到现在&#xff0c;经历了许多&#xff0c;这篇帖…

Linux :: 【简单开发篇 :: vim 编辑器:(1)】:: vim 编辑器的基本认识与三种 vim 常用模式 | 使用:打开编辑、退出保存关闭vim

前言&#xff1a;本篇是 Linux 基本操作篇章的内容&#xff01; 笔者使用的环境是基于腾讯云服务器&#xff1a;CentOS 7.6 64bit。 学习集&#xff1a; C 入门到入土&#xff01;&#xff01;&#xff01;学习合集Linux 从命令到网络再到内核&#xff01;学习合集 目录索引&am…

yolov8Pose实战

目录 前言一、yolov8环境搭建二、测试训练模型&#xff0c;评估模型&#xff0c;并导出模型实测检测效果 测试人体姿态估计 前言 YOLO系列层出不穷&#xff0c;从yolov5到现在的yolov8仅仅不到一年的时间。追踪新技术&#xff0c;了解前沿算法&#xff0c;一起来测试下yolov8在…

【密码学复习】第十章 身份鉴别

身份鉴别的定义 定义&#xff1a;身份鉴别&#xff0c;又称为身份识别、身份认证。它是证实客户的真实身份与其所声称的身份是否相符的过程。 口令身份鉴别 固定口令&#xff08;四&#xff09; 注册环节&#xff1a;双因子认证 ① 接收用户提供的口令pw&#xff08;PIN&…

车辆救援道路救援预约汽修托运小程序

道路救援&#xff1a;指汽车道路紧急救援&#xff0c;为故障车主提供包括诸如&#xff1a;拖吊、换水、充电、换胎、送油以及现场小修等服务(Road-Side Service)&#xff1b; 同时也指交通事故道路救援&#xff0c;包括伤员救治、道路疏导等。 随着我国巨大的汽车拥有量&…

1计算机系统概述_1.2计算机系统层次结构

1.2 计算机系统层次结构 计算机系统&#xff08;CO 自命名&#xff09; 1、CO的组成 硬件系统和软件系统共同构成了一个完整的计算机系统 ——硬件&#xff1a;有形的物理设备&#xff0c;是CO中实际物理装置的总称 ——软件&#xff1a;在硬件上运行的程序和相关的数据及文…