OpenGl之摄像机

news2025/1/9 16:21:38

文章目录

  • 摄像机/观察空间
    • 摄像机位置
    • 摄像机方向
    • 右轴
    • 上轴
  • Look At
  • 自由移动
  • 移动速度
  • 鼠标输入
  • 缩放
  • 摄像机源码

 OpenGL本身没有摄像机(Camera)的概念,但我们可以通过把场景中的所有物体往相反方向移动的方式来模拟出摄像机,产生一种我们在移动的感觉,而不是场景在移动。

摄像机/观察空间

 当我们讨论摄像机/观察空间(Camera/View Space)的时候,是在讨论以摄像机的视角作为场景原点时场景中所有的顶点坐标:观察矩阵把所有的世界坐标变换为相对于摄像机位置与方向的观察坐标。要定义一个摄像机,我们需要它在世界空间中的位置、观察的方向、一个指向它右侧的向量以及一个指向它上方的向量。
在这里插入图片描述

摄像机位置

获取摄像机位置很简单。摄像机位置简单来说就是世界空间中一个指向摄像机位置的向量。

glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);

正z轴是从屏幕指向你的,如果我们希望摄像机向后移动,我们就沿着z轴的正方向移动。

摄像机方向

 下一个需要的向量是摄像机的方向,这里指的是摄像机指向哪个方向。现在我们让摄像机指向场景原点:(0, 0, 0)。还记得如果将两个矢量相减,我们就能得到这两个矢量的差吗?用场景原点向量减去摄像机位置向量的结果就是摄像机的指向向量。由于我们知道摄像机指向z轴负方向,但我们希望方向向量(Direction Vector)指向摄像机的z轴正方向。如果我们交换相减的顺序,我们就会获得一个指向摄像机正z轴方向的向量:

glm::vec3 cameraTarget = glm::vec3(0.0f, 0.0f, 0.0f);
glm::vec3 cameraDirection = glm::normalize(cameraPos - cameraTarget);

右轴

 我们需要的另一个向量是一个右向量(Right Vector),它代表摄像机空间的x轴的正方向。为获取右向量我们需要先使用一个小技巧:先定义一个上向量(Up Vector)。接下来把上向量和第二步得到的方向向量进行叉乘。两个向量叉乘的结果会同时垂直于两向量,因此我们会得到指向x轴正方向的那个向量(如果我们交换两个向量叉乘的顺序就会得到相反的指向x轴负方向的向量):

glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f); 
glm::vec3 cameraRight = glm::normalize(glm::cross(up, cameraDirection));

上轴

 现在我们已经有了x轴向量和z轴向量,获取一个指向摄像机的正y轴向量就相对简单了:我们把右向量和方向向量进行叉乘:

glm::vec3 cameraUp = glm::cross(cameraDirection, cameraRight);

 在叉乘和一些小技巧的帮助下,我们创建了所有构成观察/摄像机空间的向量。对于想学到更多数学原理的读者,提示一下,在线性代数中这个处理叫做格拉姆—施密特正交化(Gram-Schmidt Process)。使用这些摄像机向量我们就可以创建一个LookAt矩阵了,它在创建摄像机的时候非常有用。

Look At

 使用矩阵的好处之一是如果你使用3个相互垂直(或非线性)的轴定义了一个坐标空间,你可以用这3个轴外加一个平移向量来创建一个矩阵,并且你可以用这个矩阵乘以任何向量来将其变换到那个坐标空间。这正是LookAt矩阵所做的,现在我们有了3个相互垂直的轴和一个定义摄像机空间的位置坐标,我们可以创建我们自己的LookAt矩阵了:
在这里插入图片描述
 其中R是右向量,U是上向量,D是方向向量,P是摄像机位置向量。注意,位置向量是相反的,因为我们最终希望把世界平移到与我们自身移动的相反方向。把这个LookAt矩阵作为观察矩阵可以很高效地把所有世界坐标变换到刚刚定义的观察空间。LookAt矩阵就像它的名字表达的那样:它会创建一个看着(Look at)给定目标的观察矩阵。
 幸运的是,GLM已经提供了这些支持。我们要做的只是定义一个摄像机位置,一个目标位置和一个表示世界空间中的上向量的向量(我们计算右向量使用的那个上向量)。接着GLM就会创建一个LookAt矩阵,我们可以把它当作我们的观察矩阵:

glm::mat4 view;
view = glm::lookAt(glm::vec3(0.0f, 0.0f, 3.0f), 
           glm::vec3(0.0f, 0.0f, 0.0f), 
           glm::vec3(0.0f, 1.0f, 0.0f));

glm::LookAt函数需要一个位置、目标和上向量。

自由移动

 让摄像机绕着场景转的确很有趣,但是让我们自己移动摄像机会更有趣!首先我们必须设置一个摄像机系统,所以在我们的程序前面定义一些摄像机变量很有用:

glm::vec3 cameraPos   = glm::vec3(0.0f, 0.0f,  3.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp    = glm::vec3(0.0f, 1.0f,  0.0f);

LookAt函数现在成了:

view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);

 我们首先将摄像机位置设置为之前定义的cameraPos。方向是当前的位置加上我们刚刚定义的方向向量。这样能保证无论我们怎么移动,摄像机都会注视着目标方向。让我们摆弄一下这些向量,在按下某些按钮时更新cameraPos向量。

void processInput(GLFWwindow *window)
{
    ...
    float cameraSpeed = 0.05f; // adjust accordingly
    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        cameraPos += cameraSpeed * cameraFront;
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        cameraPos -= cameraSpeed * cameraFront;
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

 当我们按下WASD键的任意一个,摄像机的位置都会相应更新。如果我们希望向前或向后移动,我们就把位置向量加上或减去方向向量。如果我们希望向左右移动,我们使用叉乘来创建一个右向量(Right Vector),并沿着它相应移动就可以了。这样就创建了使用摄像机时熟悉的横移(Strafe)效果。

移动速度

 目前我们的移动速度是个常量。理论上没什么问题,但是实际情况下根据处理器的能力不同,有些人可能会比其他人每秒绘制更多帧,也就是以更高的频率调用processInput函数。结果就是,根据配置的不同,有些人可能移动很快,而有些人会移动很慢。当你发布你的程序的时候,你必须确保它在所有硬件上移动速度都一样。
 图形程序和游戏通常会跟踪一个时间差(Deltatime)变量,它储存了渲染上一帧所用的时间。我们把所有速度都去乘以deltaTime值。结果就是,如果我们的deltaTime很大,就意味着上一帧的渲染花费了更多时间,所以这一帧的速度需要变得更高来平衡渲染所花去的时间。使用这种方法时,无论你的电脑快还是慢,摄像机的速度都会相应平衡,这样每个用户的体验就都一样了。
 我们跟踪两个全局变量来计算出deltaTime值:

float deltaTime = 0.0f; // 当前帧与上一帧的时间差
float lastFrame = 0.0f; // 上一帧的时间

在每一帧中我们计算出新的deltaTime以备后用。

float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;

现在我们有了deltaTime,在计算速度的时候可以将其考虑进去了:

void processInput(GLFWwindow *window)
{
  float cameraSpeed = 2.5f * deltaTime;
  ...
}

鼠标输入

 偏航角和俯仰角是通过鼠标(或手柄)移动获得的,水平的移动影响偏航角,竖直的移动影响俯仰角。它的原理就是,储存上一帧鼠标的位置,在当前帧中我们当前计算鼠标位置与上一帧的位置相差多少。如果水平/竖直差别越大那么俯仰角或偏航角就改变越大,也就是摄像机需要移动更多的距离。
 首先我们要告诉GLFW,它应该隐藏光标,并捕捉(Capture)它。捕捉光标表示的是,如果焦点在你的程序上(译注:即表示你正在操作这个程序,Windows中拥有焦点的程序标题栏通常是有颜色的那个,而失去焦点的程序标题栏则是灰色的),光标应该停留在窗口中(除非程序失去焦点或者退出)。我们可以用一个简单地配置调用来完成:

glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

 在调用这个函数之后,无论我们怎么去移动鼠标,光标都不会显示了,它也不会离开窗口。对于FPS摄像机系统来说非常完美。
 为了计算俯仰角和偏航角,我们需要让GLFW监听鼠标移动事件。(和键盘输入相似)我们会用一个回调函数来完成,函数的原型如下:

void mouse_callback(GLFWwindow* window, double xpos, double ypos);

这里的xpos和ypos代表当前鼠标的位置。当我们用GLFW注册了回调函数之后,鼠标一移动mouse_callback函数就会被调用:

glfwSetCursorPosCallback(window, mouse_callback);

在处理FPS风格摄像机的鼠标输入的时候,我们必须在最终获取方向向量之前做下面这几步:
 1、计算鼠标距上一帧的偏移量。
 2、把偏移量添加到摄像机的俯仰角和偏航角中。
 3、对偏航角和俯仰角进行最大和最小值的限制。
 4、计算方向向量。
第一步是计算鼠标自上一帧的偏移量。我们必须先在程序中储存上一帧的鼠标位置,我们把它的初始值设置为屏幕的中心(屏幕的尺寸是800x600)

float lastX = 400, lastY = 300;

然后在鼠标的回调函数中我们计算当前帧和上一帧鼠标位置的偏移量:

float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // 注意这里是相反的,因为y坐标是从底部往顶部依次增大的
lastX = xpos;
lastY = ypos;

float sensitivity = 0.05f;
xoffset *= sensitivity;
yoffset *= sensitivity;

注意我们把偏移量乘以了sensitivity(灵敏度)值。如果我们忽略这个值,鼠标移动就会太大了;你可以自己实验一下,找到适合自己的灵敏度值。
接下来我们把偏移量加到全局变量pitch和yaw上:

yaw   += xoffset;
pitch += yoffset;

第三步,我们需要给摄像机添加一些限制,这样摄像机就不会发生奇怪的移动了(这样也会避免一些奇怪的问题)。对于俯仰角,要让用户不能看向高于89度的地方(在90度时视角会发生逆转,所以我们把89度作为极限),同样也不允许小于-89度。这样能够保证用户只能看到天空或脚下,但是不能超越这个限制。我们可以在值超过限制的时候将其改为极限值来实现:

if(pitch > 89.0f)
  pitch =  89.0f;
if(pitch < -89.0f)
  pitch = -89.0f;

注意我们没有给偏航角设置限制,这是因为我们不希望限制用户的水平旋转。当然,给偏航角设置限制也很容易,如果你愿意可以自己实现。
第四也是最后一步,就是通过俯仰角和偏航角来计算以得到真正的方向向量:

glm::vec3 front;
front.x = cos(glm::radians(pitch)) * cos(glm::radians(yaw));
front.y = sin(glm::radians(pitch));
front.z = cos(glm::radians(pitch)) * sin(glm::radians(yaw));
cameraFront = glm::normalize(front);

缩放

 作为我们摄像机系统的一个附加内容,我们还会来实现一个缩放(Zoom)接口。在之前的教程中我们说视野(Field of View)或fov定义了我们可以看到场景中多大的范围。当视野变小时,场景投影出来的空间就会减小,产生放大(Zoom In)了的感觉。我们会使用鼠标的滚轮来放大。与鼠标移动、键盘输入一样,我们需要一个鼠标滚轮的回调函数:

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
  if(fov >= 1.0f && fov <= 45.0f)
    fov -= yoffset;
  if(fov <= 1.0f)
    fov = 1.0f;
  if(fov >= 45.0f)
    fov = 45.0f;
}

摄像机源码

main.cpp

#include <glad/glad.h> 
#include <GLFW/glfw3.h>
#include <iostream>
#include <cmath> 
#include "../shader.h"
#include "../stb_image.h"
#include <glm/glm.hpp> 
#include <glm/gtc/matrix_transform.hpp> 
#include <glm/gtc/type_ptr.hpp>


float vertices[] = {
	-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,
	 0.5f, -0.5f, -0.5f, 1.0f, 0.0f,
	 0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
	 0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
	-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
	-0.5f, -0.5f, -0.5f, 0.0f, 0.0f,

	-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
	0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
	0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
	0.5f, 0.5f, 0.5f, 1.0f, 1.0f,
	-0.5f, 0.5f, 0.5f, 0.0f, 1.0f,
	-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,

	-0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
	-0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
	-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
	-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
	-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
	-0.5f, 0.5f, 0.5f, 1.0f, 0.0f,

	 0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
	 0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
	 0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
	 0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
	 0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
	 0.5f, 0.5f, 0.5f, 1.0f, 0.0f,

	-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,
	 0.5f, -0.5f, -0.5f, 1.0f, 1.0f,
	 0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
	 0.5f, -0.5f, 0.5f, 1.0f, 0.0f,
	-0.5f, -0.5f, 0.5f, 0.0f, 0.0f,
	-0.5f, -0.5f, -0.5f, 0.0f, 1.0f,

	-0.5f, 0.5f, -0.5f, 0.0f, 1.0f,
	 0.5f, 0.5f, -0.5f, 1.0f, 1.0f,
	 0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
	 0.5f, 0.5f, 0.5f, 1.0f, 0.0f,
	-0.5f, 0.5f, 0.5f, 0.0f, 0.0f,
	-0.5f, 0.5f, -0.5f, 0.0f, 1.0f
};

glm::vec3 cubePositions[] = {
	glm::vec3(0.0f, 0.0f, 0.0f),
	glm::vec3(2.0f, 5.0f, -15.0f),
	glm::vec3(-1.5f, -2.2f, -2.5f),
	glm::vec3(-3.8f, -2.0f, -12.3f),
	glm::vec3(2.4f, -0.4f, -3.5f),
	glm::vec3(-1.7f, 3.0f, -7.5f),
	glm::vec3(1.3f, -2.0f, -2.5f),
	glm::vec3(1.5f, 2.0f, -2.5f),
	glm::vec3(1.5f, 0.2f, -1.5f),
	glm::vec3(-1.3f, 1.0f, -1.5f)
};

glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 3.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);



float ratio = 0.5;
void processInput(GLFWwindow* window);
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
float deltaTime = 0.0f; // 距离上一帧的时间间隔 
float lastFrame = 0.0f; // 上一帧发生的时间
bool firstMouse = true;
float yaw = -90.0f;
float pitch = 0.0f;
float lastX = 800.0f / 2.0;
float lastY = 600.0 / 2.0;
float fov = 45.0f;


int main() {
	glfwInit();
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__ 
	glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
	GLFWwindow* window = glfwCreateWindow(800, 600, "LearnOpenGL", NULL, NULL);
	if (window == NULL) {
		std::cout << "Failed to create GLFW window" << std::endl;
		glfwTerminate();
		return -1;
	}
	//GLFW将窗口的上下文设置为当前线程的上下文
	glfwMakeContextCurrent(window);
	glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
	glfwSetCursorPosCallback(window, mouse_callback);
	glfwSetScrollCallback(window, scroll_callback);

	//GLAD
	// glad: 加载所有OpenGL函数指针
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}

	Shader ourShader("shaders/shader.vs","shaders/shader.fs");

	//创建VBO和VAO对象,并赋予ID
	unsigned int VBO, VAO;
	glGenVertexArrays(1, &VAO);
	glGenBuffers(1, &VBO);
	//绑定VBO和VAO对象
	glBindVertexArray(VAO);
	glBindBuffer(GL_ARRAY_BUFFER, VBO);
	//为当前绑定到target的缓冲区对象创建一个新的数据存储。
	//如果data不是NULL,则使用来自此指针的数据初始化数据存储
	glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

	//告知Shader如何解析缓冲里的属性值
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
	//开启VAO管理的第一个属性值
	glEnableVertexAttribArray(0);

	//告知Shader如何解析缓冲里的属性值
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
	//开启VAO管理的第一个属性值
	glEnableVertexAttribArray(1);


	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);
	glBindVertexArray(0);

	stbi_set_flip_vertically_on_load(true);
	unsigned int texture, texture1;
	glGenTextures(1, &texture);
	glBindTexture(GL_TEXTURE_2D, texture);

	// 加载并生成纹理 
	int width, height, nrChannels;
	unsigned char* data = stbi_load("../pics/container.jpg", &width, &height, &nrChannels, 0); 
	if (data) 
	{
		glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
		glGenerateMipmap(GL_TEXTURE_2D);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

		//float borderColor[] = { 1.0f, 1.0f, 0.0f, 1.0f };
		//glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

	}
	else 
	{
			std::cout << "Failed to load texture" << std::endl;
	}
	stbi_image_free(data);

	glGenTextures(1, &texture1);
	glBindTexture(GL_TEXTURE_2D, texture1);
	data = stbi_load("../pics/awesomeface.png", &width, &height, &nrChannels, 0);
	if (data)
	{
		glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
		glGenerateMipmap(GL_TEXTURE_2D);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);


		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

	}
	else
	{
		std::cout << "Failed to load texture" << std::endl;
	}
	stbi_image_free(data);

	glActiveTexture(GL_TEXTURE0);
	glBindTexture(GL_TEXTURE_2D, texture);
	glActiveTexture(GL_TEXTURE1);
	glBindTexture(GL_TEXTURE_2D, texture1);
	glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);

	ourShader.use();
	ourShader.setInt("texture1", 0);
	ourShader.setInt("texture2", 1);
	ourShader.setFloat("ratio", ratio);



	// 渲染循环
	while (!glfwWindowShouldClose(window)) {
		processInput(window);

		float currentFrame = glfwGetTime();
		deltaTime = currentFrame - lastFrame;
		lastFrame = currentFrame;

		glClearColor(0.2f, 0.3f, 0.3f, 1.0f); //状态设置
		glClear(GL_COLOR_BUFFER_BIT); //状态使用

		glm::mat4 model = glm::mat4(1.0f);
		model = glm::rotate(model, (float)glfwGetTime() * glm::radians(50.0f), glm::vec3(0.5f, 1.0f, 0.0f));
		int modelLoc = glGetUniformLocation(ourShader.ID, "model");
		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));

		const float radius = 10.0f;
		float camX = sin(glfwGetTime()) * radius;
		float camZ = cos(glfwGetTime()) * radius;
		glm::mat4 view;
		view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);


		int viewLoc = glGetUniformLocation(ourShader.ID, "view");
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));

		glm::mat4 projection;
		projection = glm::perspective(glm::radians(fov), 800.0f / 600.0f, 0.1f, 100.0f);
		int projectionLoc = glGetUniformLocation(ourShader.ID, "projection");
		glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection));

		ourShader.use();
		ourShader.setFloat("ratio", ratio);

		glEnable(GL_DEPTH_TEST);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
		// glfw: 交换缓冲区和轮询IO事件(按键按下/释放、鼠标移动等)

		glBindVertexArray(VAO);
		for (unsigned int i = 0; i < 10; i++) {
			glm::mat4 model = glm::mat4(1.0f);
			model = glm::translate(model, cubePositions[i]);
			float angle = 20.0f * i;
			model = glm::rotate(model, glm::radians(angle), glm::vec3(1.0f, 0.3f, 0.5f));
			ourShader.setMat4("model", model);
			glDrawArrays(GL_TRIANGLES, 0, 36);
		}



		glfwSwapBuffers(window);
		glfwPollEvents();
	}
	// glfw: 回收前面分配的GLFW先关资源. 
	glfwTerminate();
	glDeleteVertexArrays(1, &VAO);
	glDeleteBuffers(1, &VBO);
	glDeleteProgram(ourShader.ID);

	return 0;
}

void processInput(GLFWwindow* window) {

	if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
		glfwSetWindowShouldClose(window, true);
	if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS)
	{
		ratio += 0.001;
		printf("%lf\n", ratio);
		if (ratio > 1.0)ratio = 1.0;
	}
	if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS)
	{
		ratio -= 0.001;
		if (ratio < 0.0)ratio = 0.0;
	}

	float cameraSpeed = 2.5f * deltaTime;
	if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
		cameraPos += cameraSpeed * cameraFront;
	if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
		cameraPos -= cameraSpeed * cameraFront;
	if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
		cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
	if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
		cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;

}

void framebuffer_size_callback(GLFWwindow* window, int width, int height) {
	glViewport(0, 0, width, height);
}

void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
	if (firstMouse) { lastX = xpos; lastY = ypos; firstMouse = false; }
	float xoffset = xpos - lastX;
	float yoffset = lastY - ypos;
	lastX = xpos;
	lastY = ypos;
	float sensitivity = 0.1f;
	xoffset *= sensitivity;
	yoffset *= sensitivity;
	yaw += xoffset;
	pitch += yoffset;
	if (pitch > 89.0f) pitch = 89.0f;
	if (pitch < -89.0f) pitch = -89.0f;
	glm::vec3 direction;
	direction.x = cos(glm::radians(yaw)) * cos(glm::radians(pitch));
	direction.y = sin(glm::radians(pitch));
	direction.z = sin(glm::radians(yaw)) * cos(glm::radians(pitch));
	cameraFront = glm::normalize(direction);

}

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) {
	fov -= (float)yoffset;
	if (fov < 1.0f) fov = 1.0f;
	if (fov > 75.0f) fov = 75.0f;
}

shader.vs

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoord;

out vec2 TexCoord;
uniform float offsetX;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(aPos.x,aPos.y,aPos.z, 1.0);
    TexCoord = aTexCoord;
}

shader.fs

#version 330 core
out vec4 FragColor;
in vec2 TexCoord;

uniform sampler2D texture1; 
uniform sampler2D texture2; 
uniform float ratio;

void main()
{
    FragColor = mix(texture(texture1, TexCoord), texture(texture2, vec2(1.0-TexCoord.x,TexCoord.y)), ratio); 
}

参考地址

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/605639.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

并发专栏-队列同步器 AQS 以及 Reentrantlock 应用

队列同步器 AQS 以及 Reentrantlock 应用 Java 中的大部分同步类都是基于AbstractQueuedSynchronizer&#xff08;简称为AQS&#xff09;实现的。 ReentrantLock、ReentrantReadWriteLock、Semaphore(信号量)、CountDownLatch、公平锁、非公平锁、 ThreadPoolExecutor 都和 AQS…

《C和指针》读书笔记(第九章 字符串、字符和字节)

目录 0 简介1 字符串基础2 字符串长度3 不受限制的字符串函数3.1 复制字符串3.2 连接字符串3.3 函数的返回值3.4 字符串比较 4 长度受限的字符串函数5 字符串查找基础5.1 查找一个字符串5.2 查找任何几个字符5.3 查找一个子串 6 高级字符串查找6.1 查找一个字符串前缀6.2 查找标…

饿补基础_1 |进位制、R进制之间转换及十进制编码

目录 数值数据的表示一.进位计数制理解1.你需要了解的概念2. 晦涩难懂的官方定义3 一看就会的例子4 值得收藏的进制对照表(二、八、十、十六进制)5 计算机为什么主要使用二进制 二.不同数制之间的转换1. 为什么会出现进制转换2. 各数制转十进制3. 十进制转二进制4. 二进制与八进…

java企业级信息系统开发学习笔记12 基于配置文件整合SSM框架实现用户登录

文章目录 一、学习目标&#xff08;一&#xff09;采用MVC架构 二、基于XML配置方式整合SSM框架实现用户登录&#xff08;一&#xff09;创建表&#xff08;二&#xff09;创建项目&#xff08;三&#xff09;添加相关依赖&#xff08;四&#xff09;创建日志属性文件&#xff…

leetcode51. N 皇后 (java)

leetcode 51 N 皇后 leetcode 51 N 皇后题目描述解题思路 代码演示leetcode52 N 皇后II leetcode 51 N 皇后 原题链接: https://leetcode.cn/problems/n-queens/ 题目描述 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研…

2023 华为 Datacom-HCIE 真题题库 07/12--含解析

多项选择题 1.[试题编号&#xff1a;190187] &#xff08;多选题&#xff09;如图所示的拓扑采用了VXLAN分布式网关&#xff0c;SW1上的VBDIF10配置了&#xff1a;arp-proxy local enable命令&#xff0c;则以下描述中正确的有哪些项&#xff1f; A、SW1收到PC1发往PC2的报文&…

【PHP】ThinkPhp6期末速通

目录 一、安装Composer二、设置Composer下载源三、Composer下载&#xff0c;安装TinkPHP6四、安装成功后 目录结构五、运行 ThinkPHP6 起步一、MVC二、单应用模式访问调试 三、安装视图四、模板渲染默认访问指定访问 五、模板变量默认赋值助手函数&#xff08;若不使用默认赋值…

K8s之Deployment控制器入门到深入详解

文章目录 一、Deployment 高级控制器理论1、Deployment控制器介绍2、Deployment工作原理 二、Deployment YAML编写及参数解释1、整体Deployment YAML资源清单内容&#xff1a;2、核心参数解释&#xff1a;3、Deployment更新策略&#xff1a;4、Deployment更新策略百分比方式计算…

内网穿透技术

文章目录 前言1. 安装JAVA2. MCSManager安装3.局域网访问MCSM4.创建我的世界服务器5.局域网联机测试6.安装cpolar内网穿透7. 配置公网访问地址8.远程联机测试9. 配置固定远程联机端口地址9.1 保留一个固定tcp地址9.2 配置固定公网TCP地址9.3 使用固定公网地址远程联机 转载自内…

测试必会 | 通过容器化 Python Web 应用掌握 Docker 容器核心技能

【摘要】 当多个窗口同时 attach 到同一个容器时&#xff0c;所有的窗口都会同步的显示&#xff0c;假如其中的一个窗口发生阻塞时&#xff0c;其它的窗口也会阻塞。attach 必须是登陆到一个已经运行的容器里&#xff0c;如果从这个容器中 exit 退出的话&#xff0c;会导致容器…

HNU-操作系统OS-实验Lab8

OS_Lab8_Experimental report 湖南大学信息科学与工程学院 计科 210X wolf (学号 202108010XXX) 实验目的 通过完成本次实验,希望能达到以下目标 了解基本的文件系统系统调用的实现方法;了解一个基于索引节点组织方式的Simple FS文件系统的设计与实现;了解文件系统抽…

Ace Admin前端框架笔记一概要与布局介绍

简要 Ace Admin官网 Dashboard - Ace Admin Ace Admin Git GitHub - bopoda/ace: Twitter bootstrap 3 admin template 下载地址&#xff1a;https://download.csdn.net/download/ok060/87843670 Ace是一款轻量且功能丰富的管理模板&#xff0c;干净且易于使用。 当前版本…

计组 第二章错题 2.2 运算方法和运算电路

选D 地址寄存器MAR是存储器部件 访存时暂存访存地址 符号位不变 附加位是符号位的扩展 选B A&#xff1a;检查加减 B&#xff1a;对 因为两个符号位一样 D&#xff1a;需要两个 存储单元把信号同时传给两个单元 用双符号位的方法 同0异1 符号相同 0 正 不同 为1 负 逻辑一样 原…

目标检测第三篇:基于SSD的目标检测算法

文章目录 SSD简介网络搭建卷积块下采样块主干网多层特征提起层输出头 数据处理形成训练TXTDatasetDataLoaderAnchors生成先验框匹配先验框位置 offset 损失函数训练代码及参考 SSD简介 SSD&#xff0c;全称Single Shot MultiBox Detector&#xff0c;是Wei Liu在ECCV 2016上提…

软件测试新人害怕不过试用期,教你几招使你安稳度过!!!

对于很多刚步入职场的新人来说&#xff0c;害怕自己试用期过不了&#xff0c;被辞退。别的行业我可能不知道该如何帮大家应对&#xff0c;但在测试行业我希望还是能给大家带俩一点帮助&#xff0c;希望大家能安稳度过试用期&#xff0c;并且成功入行。 保持初心&#xff0c;安稳…

零基础开发小程序第四课-查看功能开发

目录 1 创建页面2 搭建页面3 创建数据4 数据绑定5 页面传参6 预览发布总结 本篇是我们零基础入门课的第四篇&#xff0c;前三篇我们介绍了创建项目、列表功能、新增功能&#xff0c;本篇我们介绍一下查看详情功能的开发。 1 创建页面 打开Zion开发工具&#xff0c;点击已经创建…

Python Struct 库之 pack 和 unpack 详解

1. 官网解析 首先是官网对于 pack 、 unpack 、calcsize以及Format Strings的描述 1.1 pack、unpack、calcsize struct.pack返回一个bytes对象&#xff0c;其中包含根据格式字符串format打包的值v1, v2&#xff0c;…。参数必须与格式所要求的值完全匹配。 struct.unpack根据…

云原生 HTAP -- Cloud-Native Transactions and Analytics in SingleStore

文章目录 背景1 存算分离2. 统一的表存储 &#xff08;行列混存&#xff09;2.1 二级索引2.2 行锁 3. 自适应查询引擎3.1 Segment skipping 实现3.2 Filtering 选择 4 性能总结 背景 上篇看了 PolarDB-IMCI 在HTAP的实践&#xff0c;其中提到了其也有借鉴 SingleStore 的实现思…

openresty离线rpm升级至openresty-1.19.9.1版本

注意&#xff1a;此方法步骤仅本人验证通过&#xff0c;要升级的话&#xff0c;需要做备份 1。系统版本是centos7(Linux version 3.10.0-693.el7.x86_64) 2。默认openresty版本是1.15.8.1 3。本次升级到openresty-1.19.9.1 目前系统是没有连接外网&#xff0c;只能进行rpm离…

网络重置后无法上网,以太网和无线网全部丢失,网络适配器出现“56”错误码

文章目录 一、问题描述电脑系统&#xff1a;电脑问题&#xff1a;解决方案 二、问题过程1. IP问题2.网络重置问题3.电脑无法启动问题 三、解决方案1.卸载2.安全模式检查修复3.软件下载1.CCleaner2.驱动精灵万能网卡版 四、参考链接 一、问题描述 电脑系统&#xff1a; Window…