1.买卖股票的最佳时机:
贪心
因为股票就买卖一次,那么贪心的想法很自然就是取最左最小值,取最右最大值,那么得到的差值就是最大利润。
C++代码如下:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int low = INT_MAX;
int result = 0;
for (int i = 0; i < prices.size(); i++) {
low = min(low, prices[i]); // 取最左最小价格
result = max(result, prices[i] - low); // 直接取最大区间利润
}
return result;
}
};
动态规划:
动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?
其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。
dp[i][1] 表示第i天不持有股票所得最多现金
注意这里说的是“持有”,“持有”不代表就是当天“买入”!也有可能是昨天就买入了,今天保持持有的状态
很多同学把“持有”和“买入”没区分清楚。
在下面递推公式分析中,我会进一步讲解。
2.确定递推公式
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
这里dp[i][0]都是负的,所以越大越好(也就是越接近0),这样买股票的成本才小。其实就是在找股票成本最小的,只不过他是所得现金,所以是负的,所以变成了找最大的
如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
这里就是利润了,越大越好。
这样递推公式我们就分析完了
3.dp数组如何初始化
由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出
其基础都是要从dp[0][0]和dp[0][1]推导出来。
那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;
4.确定遍历顺序
从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。
5.举例推导dp数组
以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:
其实我还有一种思路举例dp数组和他的一模一样(只不过表是横过来的,dp[i][0]都加一个绝对值):
对应题解的举例dp数组dp[i][0]是股票的最小值,dp[i][1]是最大利润。(我感觉和贪心的思路一样)
dp[5][1]就是最终结果。
为什么不是dp[5][0]呢?
因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!
以上分析完毕,C++代码如下:
// 版本一
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
if (len == 0) return 0;
vector<vector<int>> dp(len, vector<int>(2));
dp[0][0] -= prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++) {
dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
}
return dp[len - 1][1];
}
};
还有一种滚动数组的写法:
// 版本二
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
dp[0][0] -= prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++) {
dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);
dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
}
return dp[(len - 1) % 2][1];
}
};
2.买卖股票的最佳时机II
首先明确一点如果你前面买了股票了他那个股票可以在同一天卖掉并买这一天的股票:
[1,2,3]的最大利润是2不是1.
所以只要把从第2天开始的正利润加起来就是最大值。
和买卖股票的最佳时机I几乎一模一样,就是在递推公式上有点小差别:
因为它可以买卖股票好多次,所以当他在第i天买入股票时,递推公式是dp[i - 1][1] - prices[i],原来的递推公式是 -prices[i],因为他就买卖一次找最大差值就行了,而这里是把每天的正利润加起来,所以要加上前面的已经赚到的利润。
dp数组的含义:
- dp[i][0] 表示第i天持有股票所得现金。
- dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
注意这里和121. 买卖股票的最佳时机 (opens new window)就是一样的逻辑,卖出股票收获利润(可能是负值)天经地义!
为什么求正利润之和,卖出股票的利润是负的?
其实这边是有点疑问的,尤其是看完贪心的思路,求正利润之和,但是其实是不用担心的,因为
他是无论当下这个股票比前面的大还是小都计算了:prices[i] + dp[i - 1][0],但是根本不会出现这种情况因为在没出现正利润之前,也就是负利润时,初始化的0比负利润大,所以利润还是0,直到出现正利润。出现正利润之后就是max(dp[i-1][1],dp[i-1][0]+prices[i])这两个的比较了,不要把前面的dp[i-1][1]写成0,不然一旦出现正利润之后就都是dp[i-1][0]+prices[i]。
滚动数组的写法:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组
dp[0][0] -= prices[0];
dp[0][1] = 0;
for (int i = 1; i < len; i++) {
dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);
dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);
}
return dp[(len - 1) % 2][1];
}
};