本文作为自己阅读论文后的总结和思考,不涉及论文翻译和模型解读,适合大家阅读完论文后交流想法,关于论文翻译可以查看参考文献。论文地址:https://arxiv.org/abs/1809.04206
TPA-LSTM
- 一. 全文总结
- 二. 研究方法
- 三. 结论
- 四. 创新点
- 五. 思考
- 六. 参考文献
- 七. Pytorch实现⭐
- util(工具函数)
- Model
- Load Data
- Train
一. 全文总结
本文提出使用一组滤波器来提取时不变的时间模式(CNN),类似于将时间序列数据转换为其“频域”。然后,我们提出了一种新的注意力机制来选择相关的时间序列,并利用其频域信息进行多元预测。本文将所提出的模型应用于几个真实世界的任务,并在几乎所有的情况下实现最先进的性能。
二. 研究方法
- 提出了一种新的attention机制,即Temporal pattern attention(TPA),其中“Temporal pattern”来指代跨多个时间步骤的任何时不变模式。
- 在TPA中,机器不是像典型的注意机制那样选择相关的时间步长,而是学习选择相关的时间序列。引入卷积神经网络(CNN)从每个个体变量中提取时间模式信息。
三. 结论
本文以MTS预测为研究对象,提出了一种新的时间模式注意机制,消除了典型注意机制对此类任务的限制。允许注意力维度具有特征,以便模型不仅在同一时间步内而且在之前的所有时间和序列中学习多个变量之间的相互依赖关系。在toy example和真实数据集上的实验都强烈支持这一想法,并表明所提出的模型达到了最先进的结果。
四. 创新点
典型的注意机制通常只关注几个时间步长,难以识别跨越多个时间步长的周期模式。本文引入了一个新的注意力概念,我们选择相关的变量,而不是相关的时间步长。该方法简单、通用,适用于RNN。
五. 思考
经过仿真该模型确有比较明显的效果
六. 参考文献
- TPA注意力机制(TPA-LSTM)
七. Pytorch实现⭐
以下代码参考:https://github.com/jingw2/demand_forecast,修正了原代码中存在的一些错误,附添加了一些必要的注释让大家更好理解。
import torch
from torch import nn
import torch.nn.functional as F
from torch.optim import Adam
import numpy as np
import math
import os
import random
import matplotlib.pyplot as plt
import pickle
from tqdm import tqdm
import pandas as pd
from sklearn.preprocessing import StandardScaler
from datetime import date
import argparse
from progressbar import *
util(工具函数)
def get_data_path():
folder = os.path.dirname(__file__)
return os.path.join(folder, "data")
def RSE(ypred, ytrue):
rse = np.sqrt(np.square(ypred - ytrue).sum()) / \
np.sqrt(np.square(ytrue - ytrue.mean()).sum())
return rse
def quantile_loss(ytrue, ypred, qs):
'''
Quantile loss version 2
Args:
ytrue (batch_size, output_horizon)
ypred (batch_size, output_horizon, num_quantiles)
'''
L = np.zeros_like(ytrue)
for i, q in enumerate(qs):
yq = ypred[:, :, i]
diff = yq - ytrue
L += np.max(q * diff, (q - 1) * diff)
return L.mean()
def SMAPE(ytrue, ypred):
ytrue = np.array(ytrue).ravel()
ypred = np.array(ypred).ravel() + 1e-4
mean_y = (ytrue + ypred) / 2.
return np.mean(np.abs((ytrue - ypred) \
/ mean_y))
def MAPE(ytrue, ypred):
ytrue = np.array(ytrue).ravel() + 1e-4
ypred = np.array(ypred).ravel()
return np.mean(np.abs((ytrue - ypred) \
/ ytrue))
def train_test_split(X, y, train_ratio=0.7):
'''
- X (array like): shape (num_samples, num_periods, num_features)
- y (array like): shape (num_samples, num_periods)
'''
num_ts, num_periods, num_features = X.shape
train_periods = int(num_periods * train_ratio)
random.seed(2)
Xtr = X[:, :train_periods, :]
ytr = y[:, :train_periods]
Xte = X[:, train_periods:, :]
yte = y[:, train_periods:]
return Xtr, ytr, Xte, yte
class StandardScaler:
def fit_transform(self, y):
self.mean = np.mean(y)
self.std = np.std(y) + 1e-4
return (y - self.mean) / self.std
def inverse_transform(self, y):
return y * self.std + self.mean
def transform(self, y):
return (y - self.mean) / self.std
class MaxScaler:
def fit_transform(self, y):
self.max = np.max(y)
return y / self.max
def inverse_transform(self, y):
return y * self.max
def transform(self, y):
return y / self.max
class MeanScaler:
def fit_transform(self, y):
self.mean = np.mean(y)
return y / self.mean
def inverse_transform(self, y):
return y * self.mean
def transform(self, y):
return y / self.mean
class LogScaler:
def fit_transform(self, y):
return np.log1p(y)
def inverse_transform(self, y):
return np.expm1(y)
def transform(self, y):
return np.log1p(y)
def gaussian_likelihood_loss(z, mu, sigma):
'''
Gaussian Liklihood Loss
Args:
z (tensor): true observations, shape (num_ts, num_periods)
mu (tensor): mean, shape (num_ts, num_periods)
sigma (tensor): standard deviation, shape (num_ts, num_periods)
likelihood:
(2 pi sigma^2)^(-1/2) exp(-(z - mu)^2 / (2 sigma^2))
log likelihood:
-1/2 * (log (2 pi) + 2 * log (sigma)) - (z - mu)^2 / (2 sigma^2)
'''
negative_likelihood = torch.log(sigma + 1) + (z - mu) ** 2 / (2 * sigma ** 2) + 6
return negative_likelihood.mean()
def negative_binomial_loss(ytrue, mu, alpha):
'''
Negative Binomial Sample
Args:
ytrue (array like)
mu (array like)
alpha (array like)
maximuze log l_{nb} = log Gamma(z + 1/alpha) - log Gamma(z + 1) - log Gamma(1 / alpha)
- 1 / alpha * log (1 + alpha * mu) + z * log (alpha * mu / (1 + alpha * mu))
minimize loss = - log l_{nb}
Note: torch.lgamma: log Gamma function
'''
batch_size, seq_len = ytrue.size()
likelihood = torch.lgamma(ytrue + 1. / alpha) - torch.lgamma(ytrue + 1) - torch.lgamma(1. / alpha) \
- 1. / alpha * torch.log(1 + alpha * mu) \
+ ytrue * torch.log(alpha * mu / (1 + alpha * mu))
return - likelihood.mean()
def batch_generator(X, y, num_obs_to_train, seq_len, batch_size):
'''
Args:
X (array like): shape (num_samples, train_periods, num_features)
y (array like): shape (num_samples, train_periods)
num_obs_to_train (int): 训练的历史窗口长度
seq_len (int): sequence/encoder/decoder length
batch_size (int)
'''
num_ts, num_periods, _ = X.shape
if num_ts < batch_size:
batch_size = num_ts
t = random.choice(range(num_obs_to_train, num_periods-seq_len)) # 从num_obs_to_train和num_periods-seq_len-1之间随机选一个整数,作为预测点
batch = random.sample(range(num_ts), batch_size) # 从num_ts条数据中随机选择batch_size条
X_train_batch = X[batch, t-num_obs_to_train:t, :] # (batch_size, num_obs_to_train, num_features)
y_train_batch = y[batch, t-num_obs_to_train:t] # (batch_size, num_obs_to_train)
Xf = X[batch, t:t+seq_len, :] # (batch_size, seq_len, num_features)
yf = y[batch, t:t+seq_len] # (batch_size, seq_len)
return X_train_batch, y_train_batch, Xf, yf
Model
class TemporalPatternAttention(nn.Module):
def __init__(self, filter_size, filter_num, attn_len, attn_size):
super(TemporalPatternAttention, self).__init__()
self.filter_size = filter_size # 1
self.filter_num = filter_num
self.feat_size = attn_size - self.filter_size + 1 # hidden_size
self.conv = nn.Conv2d(1, filter_num, (attn_len, filter_size))
self.linear1 = nn.Linear(attn_size, filter_num)
self.linear2 = nn.Linear(attn_size + self.filter_num, attn_size)
self.relu = nn.ReLU()
def forward(self, H, ht): # H:(batch_size, 1, obs_len-1, hidden_size) ht:(batch_size, hidden_size)
_, channels, _, attn_size = H.size()
conv_vecs = self.conv(H) # (batch_size, filter_num, 1, hidden_size)
conv_vecs = conv_vecs.view(-1, self.feat_size, self.filter_num) # (batch_size, hidden_size, filter_num)
conv_vecs = self.relu(conv_vecs) # (batch_size, hidden_size, filter_num)
# score function
htt = self.linear1(ht) # (batch_size, filter_num)
htt = htt.view(-1, self.filter_num, 1) # (batch_size, filter_num, 1)
s = torch.bmm(conv_vecs, htt) # (batch_size, hidden_size, 1)
alpha = torch.sigmoid(s) # (batch_size, hidden_size, 1)
v = torch.bmm(conv_vecs.view(-1,self.filter_num,attn_size), alpha).view(-1, self.filter_num) # (batch_size, filter_num)
concat = torch.cat([ht, v], dim=1) # (batch_size, hidden_size+filter_num)
new_ht = self.linear2(concat) # (batch_size, hidden_size)
return new_ht
class TPALSTM(nn.Module):
def __init__(self, input_size, output_horizon, hidden_size, obs_len, n_layers):
super(TPALSTM, self).__init__()
self.hidden = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.lstm = nn.LSTM(hidden_size, hidden_size, n_layers, \
bias=True, batch_first=True) # output (batch_size, obs_len, hidden_size)
self.hidden_size = hidden_size
self.filter_num = 16
self.filter_size = 1
self.output_horizon = output_horizon
self.attention = TemporalPatternAttention(self.filter_size, \
self.filter_num, obs_len-1, hidden_size)
self.linear = nn.Linear(hidden_size, output_horizon)
self.n_layers = n_layers
def forward(self, x):
batch_size, obs_len, features_size = x.shape #(batch_size, obs_len, features_size)
xconcat = self.hidden(x) #(batch_size, obs_len, hidden_size)
H = torch.zeros(batch_size, obs_len-1, self.hidden_size).to(device) #(batch_size, obs_len-1, hidden_size)
ht = torch.zeros(self.n_layers, batch_size, self.hidden_size).to(device) # (num_layers, batch_size, hidden_size)
ct = ht.clone()
for t in range(obs_len):
xt = xconcat[:, t, :].view(batch_size, 1, -1) #(batch_size, 1, hidden_size)
out, (ht, ct) = self.lstm(xt, (ht, ct)) # ht size (num_layers, batch_size, hidden_size)
htt = ht[-1, :, :] # (batch_size, hidden_size)
if t != obs_len - 1:
H[:, t, :] = htt
H = self.relu(H) #(batch_size, obs_len-1, hidden_size)
# reshape hidden states H
H = H.view(batch_size, 1, obs_len-1, self.hidden_size) #(batch_size, 1, obs_len-1, hidden_size)
new_ht = self.attention(H, htt) # (batch_size, hidden_size)
ypred = self.linear(new_ht) # (batch_size, output_horizon)
return ypred
Load Data
num_epoches = 100
step_per_epoch = 3 #在一个epoch中,从训练集中提取step_per_epoch次训练数据
lr = 1e-3
n_layers = 1
hidden_size = 24
seq_len = 30 #预测的未来窗口长度
num_obs_to_train = 168 #训练的历史窗口长度
num_results_to_sample = 10
show_plot = True
run_test = True
standard_scaler = True
log_scaler = False
mean_scaler = False
max_scaler = False
batch_size = 128
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 读取数据
data = pd.read_csv("LD_MT200_hour.csv", parse_dates=["date"])
data["year"] = data["date"].apply(lambda x: x.year)
data["day_of_week"] = data["date"].apply(lambda x: x.dayofweek)
data = data.loc[(data["date"].dt.date >= date(2014, 1, 1)) & (data["date"].dt.date <= date(2014, 3, 1))]
print(data.shape)
plt.figure(figsize=(16, 4))
plt.plot(data['MT_200'])
data.head()
# 数据预处理
features = ["hour", "day_of_week"]
# hours = pd.get_dummies(data["hour"])
# dows = pd.get_dummies(data["day_of_week"])
years = data["year"]
hours = data["hour"]
dows = data["day_of_week"]
MT_200 = np.asarray(data["MT_200"]).reshape(-1,1)
yscaler1 = StandardScaler()
MT_200 = yscaler1.fit_transform(MT_200)
X = np.c_[np.asarray(hours),np.asarray(dows),np.asarray(MT_200)] #X:(len,features)
num_features = X.shape[1]
num_periods = len(data)
X = np.asarray(X).reshape((-1, num_periods, num_features))
y = np.asarray(data["MT_200"]).reshape((-1, num_periods))
print("X_shape=",X.shape) # (series_num,len,features_num)
print("y_shape=",y.shape) # (series_num,len)
# X = np.tile(X, (10, 1, 1))
# y = np.tile(y, (10, 1))
输出:
X_shape= (1, 1440, 3)
y_shape= (1, 1440)
def sliding_window(DataSet, width, multi_vector = True): #DataSet has to be as an Array
if multi_vector: #三维 (num_samples,length,features)
num_samples,length,features = DataSet.shape
else: #二维 (num_samples,length)
DataSet = DataSet[:,:,np.newaxis] #(num_samples,length,1)
num_samples,length,features = DataSet.shape
x = DataSet[:,0:width,:] #(num_samples,width,features)
x = x[np.newaxis,:,:,:] #(1,num_samples,width,features)
for i in range(length - width):
i += 1
tmp = DataSet[:,i:i + width,:]#(num_samples,width,features)
tmp = tmp[np.newaxis,:,:,:] #(1,num_samples,width,features)
x = np.concatenate([x,tmp],0) #(i+1,num_samples,width,features)
return x
width = num_obs_to_train + seq_len
X_data = sliding_window(X, width, multi_vector = True) #(len-width+1,num_samples,width,features)
Y_data = sliding_window(y, width, multi_vector = False) #(len-width+1,num_samples,width,1)
print("x的维度为:",X_data.shape)
print("y的维度为:",Y_data.shape)
# 取其中一类序列
i = 0
X_data = X_data[:,i,:,:]
Y_data = Y_data[:,i,:,0]
print("x的维度为:",X_data.shape)
print("y的维度为:",Y_data.shape)
输出:
x的维度为: (1243, 1, 198, 3)
y的维度为: (1243, 1, 198, 1)
x的维度为: (1243, 198, 3)
y的维度为: (1243, 198)
###### SPLIT TRAIN TEST
from sklearn.model_selection import train_test_split
Xtr, Xte, ytr, yte = train_test_split(X_data, Y_data,
test_size=0.2,
random_state=0,
shuffle=False)
print("X_train:{},y_train:{}".format(Xtr.shape,ytr.shape))
print("X_test:{},y_test:{}".format(Xte.shape,yte.shape))
输出:
X_train:(994, 198, 3),y_train:(994, 198)
X_test:(249, 198, 3),y_test:(249, 198)
# 标准化
yscaler = None
if standard_scaler:
yscaler = StandardScaler()
elif log_scaler:
yscaler = LogScaler()
elif mean_scaler:
yscaler = MeanScaler()
if yscaler is not None:
ytr = yscaler.fit_transform(ytr.reshape(-1,1)).reshape(-1,seq_len+num_obs_to_train)
Xtr=torch.as_tensor(torch.from_numpy(Xtr), dtype=torch.float32)
ytr=torch.as_tensor(torch.from_numpy(ytr),dtype=torch.float32)
Xte=torch.as_tensor(torch.from_numpy(Xte), dtype=torch.float32)
yte=torch.as_tensor(torch.from_numpy(yte),dtype=torch.float32)
print("X_train:{},y_train:{}".format(Xtr.shape,ytr.shape))
print("X_test:{},y_test:{}".format(Xte.shape,yte.shape))
train_dataset=torch.utils.data.TensorDataset(Xtr,ytr) #训练集dataset
train_Loader=torch.utils.data.DataLoader(train_dataset,batch_size=batch_size)
输出:
X_train:torch.Size([994, 198, 3]),y_train:torch.Size([994, 198])
X_test:torch.Size([249, 198, 3]),y_test:torch.Size([249, 198])
Train
Args:
- X (array like): shape (num_samples, num_periods, num_features)
- y (array like): shape (num_samples, num_periods)
- epochs (int): number of epochs to run
- step_per_epoch (int): steps per epoch to run
- num_obs_to_train (int): The length of the history window for training
- seq_len (int): output horizon
- likelihood (str): what type of likelihood to use, default is gaussian
- num_skus_to_show (int): how many skus to show in test phase
- num_results_to_sample (int): how many samples in test phase as prediction
# 定义模型和优化器
num_ts, num_periods, num_features = X.shape
model = TPALSTM(input_size=Xtr.shape[2], output_horizon=seq_len, hidden_size=32, obs_len=num_obs_to_train, n_layers=1).to(device)
optimizer = Adam(model.parameters(), lr=lr)
random.seed(2)
losses = []
cnt = 0
# training
print("开启训练")
progress = ProgressBar()
for epoch in progress(range(num_epoches)):
# print("Epoch {} starts...".format(epoch))
for x,y in train_Loader:
x = x.to(device) # (batch_size, num_obs_to_train+seq_len, num_features)
y = y.to(device) # (batch_size, num_obs_to_train+seq_len)
Xtrain = x[:,:num_obs_to_train,:].float() # (batch_size, num_obs_to_train, num_features)
ytrain = y[:,:num_obs_to_train].float() # (batch_size, num_obs_to_train)
Xf = x[:,-seq_len:,:].float() # (batch_size, seq_len, num_features)
yf = y[:,-seq_len:].float() # (batch_size, seq_len)
ypred = model(Xtrain) # ypred:(batch_size, seq_len)
loss = F.mse_loss(ypred, yf)
losses.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
cnt += 1
# 绘制loss
if show_plot:
plt.plot(range(len(losses)), losses, "k-")
plt.xlabel("Period")
plt.ylabel("Loss")
plt.show()
# test
print("开启测试")
X_test_sample = Xte[:,:,:].reshape(-1,num_obs_to_train+seq_len,num_features).to(device) # (num_samples, num_obs_to_train+seq_len, num_features)
y_test_sample = yte[:,:].reshape(-1,num_obs_to_train+seq_len).to(device) # (num_samples, num_obs_to_train+seq_len)
X_test = X_test_sample[:,:num_obs_to_train,:] # (num_samples, num_obs_to_train, num_features)
Xf_test = X_test_sample[:, -seq_len:, :] # (num_samples, seq_len, num_features)
y_test = y_test_sample[:, :num_obs_to_train] # (num_samples, num_obs_to_train)
yf_test = y_test_sample[:, -seq_len:] # (num_samples, seq_len)
ypred = model(X_test)
ypred = ypred.cpu().detach().numpy()
if yscaler is not None:
ypred = yscaler.inverse_transform(ypred.reshape(-1,1)).reshape(-1,seq_len)
# ypred = ypred.ravel()
yf_test = yf_test.cpu().detach().numpy()
loss = np.sqrt(np.sum(np.square(yf_test - ypred)))
print("losses: ", loss)
输出:
开启测试
losses: 11473.168
i = -1
if show_plot: # 序列总长度为:历史窗口长度(num_obs_to_train)+预测长度(seq_len)
plt.figure(1, figsize=(20, 5))
plt.plot([k + seq_len + num_obs_to_train - seq_len for k in range(seq_len)], ypred[i,:], "r-") # 绘制50%分位数曲线
plt.title('Prediction uncertainty')
yplot = y_test_sample[i,:].cpu() #真实值 (1, seq_len+num_obs_to_train)
plt.plot(range(len(yplot)), yplot, "k-")
plt.legend(["P50 forecast", "P10-P90 quantile", "true"], loc="upper left")
ymin, ymax = plt.ylim()
plt.vlines(seq_len + num_obs_to_train - seq_len, ymin, ymax, color="blue", linestyles="dashed", linewidth=2)
plt.ylim(ymin, ymax)
plt.xlabel("Periods")
plt.ylabel("Y")
plt.show()