04_GC垃圾回收

news2024/12/23 6:38:46

面试题:

  • JVM内存模型以及分区,需要详细到每个区放什么

  • 堆里面的分区:Eden,survival from to,老年代,各自的特点。

  • GC的三种收集方法:标记清除、标记整理、复制算法的原理与特点,分别用在什么地方

  • Minor GC与Full GC(MajorGC)分别在什么时候发生

JVM垃圾判定算法:(对象已死?)

  • 引用计数法(Reference-Counting)

  • 可达性分析算法(根搜索算法)

GC垃圾回收主要有四大算法:(怎么找到已死对象并清除?)

  • 复制算法(Copying)

  • 标记清除(Mark-Sweep)

  • 标记压缩(Mark-Compact),又称标记整理

  • 分代收集算法(Generational-Collection)

一、JVM复习

JVM结构图:

堆内存结构:

GC的特点:

  • 次数上频繁收集Young区

  • 次数上较少收集Old区

  • 基本不动Perm区

二、垃圾判定

1. 引用计数法(Reference-Counting)

引用计数算法是通过判断对象的引用数量来决定对象是否可以被回收。

给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。

优点:

  • 简单,高效,现在的objective-c、python等用的就是这种算法。

缺点:

  • 引用和去引用伴随着加减算法,影响性能

  • 很难处理循环引用,相互引用的两个对象则无法释放。

因此目前主流的Java虚拟机都摒弃掉了这种算法

2. 可达性分析算法

这个算法的实质在于将一系列GC Roots作为初始的存活对象合集(live set),然后从该合集出发,探索所有能够被该合集引用到的对象,并将其加入到该和集中,这个过程称之为标记(mark)。 最终,未被探索到的对象便是死亡的,是可以回收的。

在Java语言中,可以作为GC Roots的对象包括下面几种:

  • 虚拟机栈(栈帧中的本地变量表)中的引用对象。

  • 方法区中的类静态属性引用的对象。

  • 方法区中的常量引用的对象。

  • 本地方法栈中JNI(Native方法)的引用对象

真正标记以为对象为可回收状态至少要标记两次。

3. 四种引用

平时只会用到强引用软引用

强引用:

类似于 Object obj = new Object(); 只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。

软引用:

SoftReference 类实现软引用。在系统要发生内存溢出异常之前,才会将这些对象列进回收范围之中进行二次回收。如果这次回收还没有足够的内存,才会抛出内存溢出异常。软引用可用来实现内存敏感的高速缓存。

弱引用:

WeakReference 类实现弱引用。对象只能生存到下一次垃圾收集之前。在垃圾收集器工作时,无论内存是否足够都会回收掉只被弱引用关联的对象。

虚引用:

PhantomReference 类实现虚引用。无法通过虚引用获取一个对象的实例,为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。

三、垃圾回收算法

在介绍JVM垃圾回收算法前,先介绍一个概念:Stop-the-World

Stop-the-world意味着 JVM由于要执行GC而停止了应用程序的执行,并且这种情形会在任何一种GC算法中发生。当Stop-the-world发生时,除了GC所需的线程以外,所有线程都处于等待状态直到GC任务完成。事实上,GC优化很多时候就是指减少Stop-the-world发生的时间,从而使系统具有高吞吐 、低停顿的特点。

1. 复制算法(Copying)

该算法将内存平均分成两部分,然后每次只使用其中的一部分,当这部分内存满的时候,将内存中所有存活的对象复制到另一个内存中,然后将之前的内存清空,只使用这部分内存,循环下去。

优点:

  • 实现简单

  • 不产生内存碎片

缺点:

  • 将内存缩小为原来的一半,浪费了一半的内存空间,代价太高;如果不想浪费一半的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

  • 如果对象的存活率很高,我们可以极端一点,假设是100%存活,那么我们需要将所有对象都复制一遍,并将所有引用地址重置一遍。复制这一工作所花费的时间,在对象存活率达到一定程度时,将会变的不可忽视。 所以从以上描述不难看出,复制算法要想使用,最起码对象的存活率要非常低才行,而且最重要的是,我们必须要克服50%内存的浪费。

年轻代中使用的是Minor GC,这种GC算法采用的是复制算法(Copying)。

HotSpot JVM把年轻代分为了三部分:1个Eden区和2个Survivor区(分别叫from和to)。默认比例为8:1:1,一般情况下,新创建的对象都会被分配到Eden区。因为年轻代中的对象基本都是朝生夕死的(90%以上),所以在年轻代的垃圾回收算法使用的是复制算法。

在GC开始的时候,对象只会存在于Eden区和名为“From”的Survivor区,Survivor区“To”是空的。紧接着进行GC,Eden区中所有存活的对象都会被复制到“To”,而在“From”区中,仍存活的对象会根据他们的年龄值来决定去向。对象在Survivor区中每熬过一次Minor GC,年龄就会增加1岁。年龄达到一定值(年龄阈值,可以通过-XX:MaxTenuringThreshold来设置)的对象会被移动到年老代中,没有达到阈值的对象会被复制到“To”区域。经过这次GC后,Eden区和From区已经被清空。这个时候,“From”和“To”会交换他们的角色,也就是新的“To”就是上次GC前的“From”,新的“From”就是上次GC前的“To”。不管怎样,都会保证名为To的Survivor区域是空的。Minor GC会一直重复这样的过程,直到“To”区被填满,“To”区被填满之后,会将所有对象移动到年老代中。

因为Eden区对象一般存活率较低,一般的,使用两块10%的内存作为空闲和活动区间,而另外80%的内存,则是用来给新建对象分配内存的。一旦发生GC,将10%的from活动区间与另外80%中存活的eden对象转移到10%的to空闲区间,接下来,将之前90%的内存全部释放,以此类推。

2. 标记清除(Mark-Sweep)

“标记-清除”(Mark Sweep)算法是几种GC算法中最基础的算法,是因为后续的收集算法都是基于这种思路并对其不足进行改进而得到的。正如名字一样,算法分为2个阶段:

  1. 标记出需要回收的对象,使用的标记算法均为可达性分析算法

  2. 回收被标记的对象。

 

缺点:

  • 效率问题(两次遍历)

  • 空间问题(标记清除后会产生大量不连续的碎片。JVM就不得不维持一个内存的空闲列表,这又是一种开销。而且在分配数组对象的时候,寻找连续的内存空间会不太好找。)

3. 标记压缩(Mark-Compact)

标记-整理法是标记-清除法的一个改进版。同样,在标记阶段,该算法也将所有对象标记为存活和死亡两种状态;不同的是,在第二个阶段,该算法并没有直接对死亡的对象进行清理,而是通过所有存活对像都向一端移动,然后直接清除边界以外的内存。

 

 

 

优点:

标记/整理算法不仅可以弥补标记/清除算法当中,内存区域分散的缺点,也消除了复制算法当中,内存减半的高额代价。

缺点:

如果存活的对象过多,整理阶段将会执行较多复制操作,导致算法效率降低。

老年代一般是由标记清除或者是标记清除与标记整理的混合实现。

4. 分代收集算法(Generational-Collection)

内存效率:复制算法>标记清除算法>标记整理算法(此处的效率只是简单的对比时间复杂度,实际情况不一定如此)。 内存整齐度:复制算法>标记整理算法>标记清除算法。 内存利用率:标记整理算法>标记清除算法>复制算法。

可以看出,效率上来说,复制算法是当之无愧的老大,但是却浪费了太多内存,而为了尽量兼顾上面所提到的三个指标,标记/整理算法相对来说更平滑一些,但效率上依然不尽如人意,它比复制算法多了一个标记的阶段,又比标记/清除多了一个整理内存的过程

难道就没有一种最优算法吗?

回答:无,没有最好的算法,只有最合适的算法。==========>分代收集算法

分代回收算法实际上是把复制算法和标记整理法的结合,并不是真正一个新的算法,一般分为:老年代(Old Generation)和新生代(Young Generation),老年代就是很少垃圾需要进行回收的,新生代就是有很多的内存空间需要回收,所以不同代就采用不同的回收算法,以此来达到高效的回收算法。

年轻代(Young Gen)

年轻代特点是区域相对老年代较小,对像存活率低。

​ 这种情况复制算法的回收整理,速度是最快的。复制算法的效率只和当前存活对像大小有关,因而很适用于年轻代的回收。而复制算法内存利用率不高的问题,通过hotspot中的两个survivor的设计得到缓解。

老年代(Tenure Gen)

老年代的特点是区域较大,对像存活率高。

这种情况,存在大量存活率高的对像,复制算法明显变得不合适。一般是由标记清除或者是标记清除与标记整理的混合实现。

四、垃圾收集器

如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现

1. Serial/Serial Old收集器

串行收集器是最古老,最稳定以及效率高的收集器,可能会产生较长的停顿,只使用一个线程去回收。新生代、老年代使用串行回收;新生代复制算法、老年代标记-压缩;垃圾收集的过程中会Stop The World(服务暂停)

它还有对应老年代的版本:Serial Old

参数控制: -XX:+UseSerialGC 串行收集器

2. ParNew 收集器

ParNew收集器收集器其实就是Serial收集器的多线程版本,除了使用多线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The world、对象分配规则、回收策略等都与Serial收集器完全一样,实现上这两种收集器也共用了相当多的代码。ParNew收集器的工作过程如下图所示。

新生代并行,老年代串行;新生代复制算法、老年代标记-压缩

参数控制:

-XX:+UseParNewGC ParNew收集器-XX:ParallelGCThreads 限制线程数量

3. Parallel / Parallel Old 收集器

Parallel Scavenge收集器类似ParNew收集器,Parallel收集器更关注系统的吞吐量。可以通过参数来打开自适应调节策略,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或最大的吞吐量;也可以通过参数控制GC的时间不大于多少毫秒或者比例;新生代复制算法、老年代标记-压缩

参数控制: -XX:+UseParallelGC 使用Parallel收集器+ 老年代串行

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供

参数控制: -XX:+UseParallelOldGC 使用Parallel收集器+ 老年代并行

4. CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用都集中在互联网站或B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为4个步骤,包括:

  • 初始标记(CMS initial mark)

  • 并发标记(CMS concurrent mark)

  • 重新标记(CMS remark)

  • 并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

由于整个过程中耗时最长的并发标记和并发清除过程中,收集器线程都可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行。老年代收集器(新生代使用ParNew)

优点: 并发收集、低停顿缺点: 产生大量空间碎片、并发阶段会降低吞吐量

参数控制:

-XX:+UseConcMarkSweepGC 使用CMS收集器-XX:+ UseCMSCompactAtFullCollection Full GC后,进行一次碎片整理;整理过程是独占的,会引起停顿时间变长-XX:+CMSFullGCsBeforeCompaction 设置进行几次Full GC后,进行一次碎片整理-XX:ParallelCMSThreads 设定CMS的线程数量(一般情况约等于可用CPU数量)

cms是一种预处理垃圾回收器,它不能等到old内存用尽时回收,需要在内存用尽前,完成回收操作,否则会导致并发回收失败

5. G1收集器

G1(Garbage-First)是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足GC 停顿时间要求的同时,还具备高吞吐量性能特征. 是目前技术发展的最前沿成果之一,HotSpot开发团队赋予它的使命是未来可以替换掉JDK1.5中发布的CMS收集器。与CMS收集器相比G1收集器有以下特点:

  1. 并行与并发:G1能充分利用CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短stop-The-World停顿时间。部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让java程序继续执行。

  2. 分代收集:分代概念在G1中依然得以保留。虽然G1可以不需要其它收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。也就是说G1可以自己管理新生代和老年代了。

  3. 空间整合:由于G1使用了独立区域(Region)概念,G1从整体来看是基于“标记-整理”算法实现收集,从局部(两个Region)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片。

  4. 可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用这明确指定一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒。

上面提到的垃圾收集器,收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),JVM最多可以有2048个Region。 一般Region大小等于堆大小除以2048,比如堆大小为4096M,则Region大小为2M,当然也可以用参数"-

XX:G1HeapRegionSize"手动指定Region大小,但是推荐默认的计算方式。虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔阂了,它们都是一部分(可以不连续)Region的集合。

每个Region被标记了E、S、O和H,说明每个Region在运行时都充当了一种角色,其中H是以往算法中没有的,它代表Humongous,这表示这些Region存储的是巨型对象(humongous object,H-obj),当新建对象大小超过Region大小一半时,直接在新的一个或多个连续Region中分配,并标记为H。

为了避免全堆扫描,G1使用了Remembered Set来管理相关的对象引用信息。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏了。

如果不计算维护Remembered Set的操作,G1收集器的运作大致可划分为以下几个步骤:

1、初始标记(Initial Making)

2、并发标记(Concurrent Marking)

3、最终标记(Final Marking)

4、筛选回收(Live Data Counting and Evacuation)

看上去跟CMS收集器的运作过程有几分相似,不过确实也这样。初始阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可以用的Region中创建新对象,这个阶段需要停顿线程,但耗时很短。并发标记阶段是从GC Roots开始对堆中对象进行可达性分析,找出存活对象,这一阶段耗时较长但能与用户线程并发运行。而最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但可并行执行。最后筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划,这一过程同样是需要停顿线程的,但Sun公司透露这个阶段其实也可以做到并发,但考虑到停顿线程将大幅度提高收集效率,所以选择停顿。下图为G1收集器运行示意图:

6. 垃圾回收器比较

如果两个收集器之间存在连线,则说明它们可以搭配使用。虚拟机所处的区域则表示它是属于新生代还是老年代收集器。

整堆收集器: G1

垃圾回收器选择策略 :

客户端程序 : Serial + Serial Old;

吞吐率优先的服务端程序(比如:计算密集型) : Parallel Scavenge + Parallel Old;

响应时间优先的服务端程序 :ParNew + CMS。

G1收集器是基于标记整理算法实现的,不会产生空间碎片,可以精确地控制停顿,将堆划分为多个大小固定的独立区域,并跟踪这些区域的垃圾堆积程度,在后台维护一个优先列表,每次根据允许的收集时间,优先回收垃圾最多的区域(Garbage First)。

7. ZGC收集器(-XX:+UseZGC)

ZGC是一款JDK 11中新加入的具有实验性质的低延迟垃圾收集器,ZGC是Azul System公司开发的 C4(Concurrent Continuously Compacting Collector)收集器

ZGC的目标主要有4个:

①支持TB量级的堆。

②最大GC停顿时间不超10ms。目前一般线上环境运行良好的JAVA应用Minor GC停顿时间在10ms左右, Major GC一般都需要100ms以上(G1可以调节停顿时间,但是如果调的过低的话,反而会适得其反),之所以能 做到这一点是因为它的停顿时间主要跟Root扫描有关,而Root数量和堆大小是没有任何关系的。

③奠定未来GC特性的基础。

④最糟糕的情况下吞吐量会降低15%。Oracle官方提到了它最大的优点是:它的停顿时间不会随着堆的增大而增长!也就是说,几十G堆的停顿时间是 10ms以下,几百G甚至上T堆的停顿时间也是10ms以下。

不分代(暂时)

单代,即ZGC「没有分代」。我们知道以前的垃圾回收器之所以分代,是因为源于「大部分对象朝生夕死」的假 设,事实上大部分系统的对象分配行为也确实符合这个假设。

ZGC内存布局

ZGC收集器是一款基于Region内存布局的,暂时不设分代的,使用了可并发的标记-整 理算法, 以低延迟为首要目标的一款垃圾收集器。 ZGC的Region可以具有如下图所示的大、 中、 小三类容量:

小型Region(Small Region) : 容量固定为2MB, 用于放置小于256KB的小对象。

中型Region(Medium Region) : 容量固定为32MB, 用于放置大于等于256KB但小于4MB的对象。

大型Region(Large Region) : 容量不固定, 可以动态变化, 但必须为2MB的整数倍, 用于放置4MB或 以上的大对象。 每个大型Region中 只会存放一个大对象, 这也预示着虽然名字叫作“大型Region”, 但它的实际容量完全有可能小于中型 Region, 最小容量可低至4MB。 大型Region在ZGC的实现中是不会被重分配(重分配是ZGC的一种处理动作, 用于复制对象的收集器阶段, 稍后会介绍到)的, 因为复制一个大对象的代价非常高昂。

ZGC运作过程

ZGC的运作过程大致可划分为以下四个大的阶段:

① 并发标记(Concurrent Mark):与G1一样,并发标记是遍历对象图做可达性分析的阶段,它的初始标记 (Mark Start)和最终标记(Mark End)也会出现短暂的停顿,与G1不同的是, ZGC的标记是在指针上而不是在对象 上进行的, 标记阶段会更新染色指针中的Marked 0、 Marked 1标志位。

② 并发预备重分配(Concurrent Prepare for Relocate):这个阶段需要根据特定的查询条件统计得出本次收 集过程要清理哪些Region,将这些Region组成重分配集(Relocation Set)。ZGC每次回收都会扫描所有的 Region,用范围更大的扫描成本换取省去G1中记忆集的维护成本。

③ 并发重分配(Concurrent Relocate):重分配是ZGC执行过程中的核心阶段,这个过程要把重分配集中的存 活对象复制到新的Region上,并为重分配集中的每个Region维护一个转发表(Forward Table),记录从旧对象 到新对象的转向关系。ZGC收集器能仅从引用上就明确得知一个对象是否处于重分配集之中,如果用户线程此时并 发访问了位于重分配集中的对象,这次访问将会被预置的内存屏障所截获,然后立即根据Region上的转发表记录将访问转发到新复制的对象上,并同时修正更新该引用的值,使其直接指向新对象,ZGC将这种行为称为指 针的“自愈”(Self-Healing)能力。

④ 并发重映射(Concurrent Remap):重映射所做的就是修正整个堆中指向重分配集中旧对象的所有引用,但是ZGC中对象引用存在“自愈”功能,所以这个重映射操作并不是很迫切。ZGC很巧妙地把并发重映射阶段要做的工作,合并到了下一次垃圾收集循环中的并发标记阶段里去完成,反正它们都是要遍历所有对象的,这样合并就节 省了一次遍历对象图的开销。一旦所有指针都被修正之后, 原来记录新旧对象关系的转发表就可以释放掉了。  

五、指定使用垃圾回收器(了解)

-XX:+UseSerialGC 年轻代和老年代都用串行收集器

-XX:+UseParNewGC 年轻代使用ParNew,老年代使用 Serial Old

-XX:+UseParallelGC 年轻代使用Paraller Scavenge,老年代使用Serial Old

-XX:+UseParallelOldGC 新生代Paraller Scavenge,老年代使用Paraller Old

-XX:+UseConcMarkSweepGC,表示年轻代使用ParNew,老年代的用CMS + Serial Old

-XX:+UseG1GC 使用G1垃圾回收器

-XX:+UseZGC 使用ZGC垃圾回收器(jdk11以后支持)

JDK 1.8默认使用 Parallel(年轻代和老年代都是)

JDK 1.9默认使用 G1

代码中查看使用的垃圾收集器:

List<GarbageCollectorMXBean> l = ManagementFactory.getGarbageCollectorMXBeans();
for(GarbageCollectorMXBean b : l) {
    System.out.println(b.getName());
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/571088.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

python+vue高校网上跳蚤二手市场的设计与实现

商品信息是卖家供应用户必不可少的一个部分。在跳蚤市场发展的整个过程中&#xff0c;商品担负着最重要的角色。为满足如今日益复杂的管理需求&#xff0c;各类管理系统程序也在不断改进。本课题所设计的普通高校网上跳蚤市场&#xff0c;使用Django框架&#xff0c;Python语言…

【2023年电工杯数学建模竞赛】选题分析+A题B题完整思路+代码分享

思路和代码会第一时间分享出来&#xff0c;可以先关注博主 1.竞赛介绍 2.本次大赛选题分析 首先大家要清楚获奖只和比例有关&#xff0c;和具体题目关系不大&#xff0c;不会出现选难题就比简单题获奖率高很多的情况出现&#xff0c;这是一个选拔性质的比赛是按照比例来的 2…

(5.19-5.25)【大数据新闻速递】

关 注gzh“大数据食铁兽”&#xff0c;了解更多大数据快讯 【第八届亚太银行数字化创新峰会圆满落幕】 第八届亚太银行数字化创新峰会在2023年5月18日举行&#xff0c;邀请了30名大咖和超过300位行业顶尖人士参加。金融数据港和中银协中西部培训机构提供特别支持。峰会围绕银行…

Kafka实时数据即席查询应用与实践

作者&#xff1a;vivo 互联网搜索团队- Deng Jie Kafka中的实时数据是以Topic的概念进行分类存储&#xff0c;而Topic的数据是有一定时效性的&#xff0c;比如保存24小时、36小时、48小时等。而在定位一些实时数据的Case时&#xff0c;如果没有对实时数据进行历史归档&#xff…

list的基本介绍

list的基本信息&#xff1a; list是一个带头双向链表的结构。constant&#xff0c;常数、常量&#xff0c;constant time 即O(1)时间复杂度。 先来简单认识一下list list支持尾插&#xff0c;尾删&#xff0c;头插&#xff0c;头删 都是一些已知的内容。 和vector的区别就是支…

Java货运物流园管理系统源码

技术架构&#xff1a;spring boot、mybatis、redis、vue、element-ui 开发语言&#xff1a;java、vue、uniapp 开发工具&#xff1a;idea、vscode、hbuilder 前端框架&#xff1a;vue 后端框架&#xff1a;spring boot 数 据 库&#xff1a;mysql 移 动 端&#xff1a; …

vue vant 登录增加图片验证码显示

<!-- 登录表单 --><van-form submit"onLogin" :show-error"false":show-error-message"false"ref"login-form"failed"onFailed"> <van-fieldv-model"user.account"icon-prefix"toutiao"…

如何借助spire.doc,在 Word 中插入 OLE 对象

Spire.Doc for .NET是一款专门对 Word 文档进行操作的 .NET 类库。在于帮助开发人员无需安装 Microsoft Word情况下&#xff0c;轻松快捷高效地创建、编辑、转换和打印 Microsoft Word 文档。拥有近10年专业开发经验Spire系列办公文档开发工具&#xff0c;专注于创建、编辑、转…

AI的发展将会产生一个新的阶层

随着AI的发展将会产生一个新的阶层&#xff0c;那就是无用阶层&#xff0c;而且我们很多人都处在这个阶层。自今年以来&#xff0c;AI技术的发展所带来的应用&#xff0c;给我们的除了震撼还是震撼。Open AI的GPT4模型不但能够写出媲美专家发表的论文&#xff0c;还能通过各类专…

淘宝商品列表数据接口(支持价格、销量排序)

淘宝商品列表数据接口是淘宝提供的一种可以获取淘宝商品信息的接口。通过该接口&#xff0c;可以获取到具有一定规则的商品信息&#xff0c;例如按照价格排序、按照销量排序等。接口返回的数据格式为JSON格式&#xff0c;可以方便地处理数据。 我们可以通过调用淘宝提供的API&…

Flink SQL JOIN

双流JOIN(Regular Join) ​ Regular Join 就是大家熟知的双流 Join&#xff0c;语法上就是普通的 JOIN 语法。图中案例是通过广告曝光流关联广告点击流将广告数据打宽&#xff0c;打宽后可以进一步计算广告费用。从图中可以看出&#xff0c;曝光流和点击流都会存入 join 节点的…

优雅处理HTTP请求:过滤器、拦截器、ControllerAdvice和自定义AOP

我们在开发Spring Boot应用程序时&#xff0c;经常会遇到需要对HTTP请求进行一些处理的情况&#xff0c;例如鉴权、数据校验、请求日志记录等等。在处理HTTP请求时&#xff0c;我们可以使用四种不同的技术来实现这些功能&#xff1a;过滤器、拦截器、ControllerAdvice和自定义A…

谷歌seo多久才能见效?谷歌seo见效的参考时间线和效果预估

影响谷歌SEO的效果因素 谷歌SEO的效果因多种因素而异&#xff0c;包括竞争程度、关键词选择、网站优化程度、内容质量和网站的历史等。一般来说&#xff0c;SEO是一个长期的过程&#xff0c;而不是一夜之间见效的事情。e6zzseo&#xff08;e6zzseo的博客_CSDN博客-seo领域博主…

嵌入式音视频疑惑汇总

小小的脑袋里,大大的疑问,该文是博主在工作中遇见问题后,面向chatGPT学习的记录笔记 1.bypass hdr 是什么? “Bypass HDR” 是指绕过高动态范围(HDR)功能的一种设置。HDR 是指一种显示技术,它可以提供更高的色彩深度和亮度范围,从而产生更加真实、明亮和有层次感的图像…

Ludo:海外飞行棋游戏玩法,文末附源码

Ludo起源于印度的古老游戏Pachisi&#xff0c;玩法类似国内的飞行棋&#xff0c;是一种适合2至4人玩的战略类棋盘游戏。 其游戏规则也很简单&#xff1a;对局中&#xff0c;每人有2颗或4颗棋子&#xff0c;通过投骰子的方式决定前进的步数&#xff0c;在前进过程中赶上对手即可…

手把手带你分析 (net.devh.boot.grpc 包下面的)服务端 Grpc 自动装配、服务注册的源码(Java版)

前言 昨天写过一篇关于如何使用 Grpc 的博客&#xff0c;出于好奇想知道 GrpcService、GrpcClient、GrpcGlobalServerInterceptor、GrpcGlobalClientInterceptor这些注解是如何生效的&#xff0c;以及服务注册的流程是怎样的&#xff0c;就简单过了一遍源码&#xff0c;帮助大家…

新人必看!手把手教你如何使用浏览器表格插件(下)

摘要&#xff1a;本文由葡萄城技术团队于博客园原创并首发。转载请注明出处&#xff1a;葡萄城官网&#xff0c;葡萄城为开发者提供专业的开发工具、解决方案和服务&#xff0c;赋能开发者。 前言 | 问题背景 作为一名优秀的打工人&#xff0c;Excel是大家上班中必不可少的办…

理解Linux TunTap设备

入门 TUN/TAP是操作系统内核中的虚拟网络设备&#xff0c;可以完成用户空间与内核空间的数据的交互。网络协议栈中的数据通过该设备可以进入到用户空间中&#xff0c;而用户空间中的程序通过该设备空间进入到内核空间的网络协议栈。 TUN模拟的是三层设备&#xff0c;操作三层…

chatgpt赋能python:Python主程序:提升编程效率与合作性的最佳选择

Python 主程序&#xff1a;提升编程效率与合作性的最佳选择 前言 Python 作为一门简单、易于学习并具备强大功能的编程语言&#xff0c;已经成为了最受欢迎的编程语言之一。Python 主程序不仅能够编写复杂的算法和进行数据处理&#xff0c;而且还可以实现广泛的应用&#xff…

基于SpringBoot+Uniapp的球队周边微信小程序

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、项目背景介绍&#xff1a; 随着微信小程序的兴起…