MNIST是一个简单的视觉计算数据集,它是像下面这样手写的数字图片:
MNIST
每张图片还额外有一个标签记录了图片上数字是几,例如上面几张图的标签就是:5、0、4、1。
MINIST数据
MINIST的数据分为2个部分:55000份训练数据(mnist.train)和10000份测试数据(mnist.test)。这个划分有重要的象征意义,他展示了在机器学习中如何使用数据。在训练的过程中,我们必须单独保留一份没有用于机器训练的数据作为验证的数据,这才能确保训练的结果的可行性。
前面已经提到,每一份MINIST数据都由图片以及标签组成。我们将图片命名为“x”,将标记数字的标签命名为“y”。训练数据集和测试数据集都是同样的结构,例如:训练的图片名为 mnist.train.images 而训练的标签名为 mnist.train.labels。
每一个图片均为28×28像素,我们可以将其理解为一个二维数组的结构:
数据1 :28*28矩阵点
mnist.train.images 是一个形态为 [55000, 784] 的张量(tensor 55000份训练数据)。第一个维度表示图片个数的索引,第二个维度表示图片中每一个像素的索引。每一个像素的取值为0或1,