1题目
给定两个整数 n
和 k
,返回范围 [1, n]
中所有可能的 k
个数的组合。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]
示例 2:
输入:n = 1, k = 1 输出:[[1]]
2链接
题目链接:77. 组合 - 力扣(LeetCode)
视频链接:带你学透回溯算法-组合问题(对应力扣题目:77.组合)| 回溯法精讲!_哔哩哔哩_bilibili
3解题思路
第一反应找两个数的组合,两层for循环暴力求解,此题可行。
但是如果找50个数的组合,嵌套50层for循环根本不可能,时间复杂度极高,所以要用回溯算法
可以把这种问题都看成树状结构问题,如图所示:
每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。
图中可以发现n相当于树的宽度,k相当于树的深度。
图中每次搜索到了叶子节点,我们就找到了一个结果。
引入类似递归三部曲的回溯算法三部曲
1、确定函数返回值及参数
本题可以使用全局变量来记录结果,无需函数返回值。
注意到组合的特性:无顺序。所以选取的时候不能再反向选取,我们可以通过设定一个标志位startIndex来处理
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)
2、回溯的终止条件
如何终止?答:到达叶子结点(找到了目标组合)
其实也就是path的长度等于所需长度k
此时用result二维数组,把path保存起来,并终止本层递归。
if (path.size() == k) {
result.push_back(path);
return;
}
3、单层回溯的过程
回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。
如此我们才遍历完图中的这棵树。
for循环每次从startIndex开始遍历,然后用path保存取到的节点i。
for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历
path.push_back(i); // 处理节点
backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.pop_back(); // 回溯,撤销处理的节点
}
可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。
注意下重点在于后面的撤销操作,这样才能起到回溯的效果
4代码
class Solution {
private:
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n; i++) {
path.push_back(i); // 处理节点
backtracking(n, k, i + 1); // 递归
path.pop_back(); // 回溯,撤销处理的节点
}
}
public:
vector<vector<int>> combine(int n, int k) {
result.clear(); // 可以不写
path.clear(); // 可以不写
backtracking(n, k, 1);
return result;
}
};