线程池学习

news2025/1/4 14:28:32

一、线程池的7个核心参数说明:

  1. corePoolSize:核心线程数

  2. maximumPoolSize:最大线程数

  3. keepAliveTime:最大空闲时间

  4. unit:最大空闲时间单位

  5. workQueue:任务队列

  6. threadFactory:表示生成线程池中工作线程的线程工厂,用于创建线程一般用默认的即可。

  7. handler:拒绝策略,有以下四种:
    (1)ThreadPoolExecutor.AbortPolicy 丢弃任务,并抛出 RejectedExecutionException 异常。
    (2)ThreadPoolExecutor.CallerRunsPolicy:该任务被线程池拒绝,由调用 execute方法的线程执行该任务。
    (3)ThreadPoolExecutor.DiscardOldestPolicy : 抛弃队列最前面的任务,然后重新尝试执行任务。
    (4)ThreadPoolExecutor.DiscardPolicy,丢弃任务,不过也不抛出异常。
    也可以自己实现RejectedExecutionHandler接口来自定义拒绝策略

线程池的4种拒绝策略理论简介
等待队列也已经排满了,再也塞不下新任务了同时,线程池中的max线程也达到了,无法继续为新任务服务。

这时候我们就需要拒绝策略机制合理的处理这个问题。

JDK拒绝策略:

● AbortPolicy(默认):直接抛出 RejectedExecutionException异常阻止系统正常运知。
● CallerRunsPolicy:"调用者运行"一种调节机制,该策略既不会抛弃任务,也不会抛出异常,而是将某些任务回退到调用者,从而降低新任务的流量。
● DiscardOldestPolicy:抛弃队列中等待最久的任务,然后把当前任务加入队列中尝试再次提交当前任务。
● DiscardPolicy:直接丢弃任务,不予任何处理也不抛出异常。如果允许任务丢失,这是最好的一种方案。

以上内置拒绝策略均实现了RejectedExecutionHandler接口。

二、线程池的使用

在这里插入图片描述

线程池的真正实现类是 ThreadPoolExecutor,其构造方法有如下4种:

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory(), defaultHandler);
}

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         threadFactory, defaultHandler);
}

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          RejectedExecutionHandler handler) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory(), handler);
}

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    if (corePoolSize < 0 ||
        maximumPoolSize <= 0 ||
        maximumPoolSize < corePoolSize ||
        keepAliveTime < 0)
        throw new IllegalArgumentException();
    if (workQueue == null || threadFactory == null || handler == null)
        throw new NullPointerException();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
}

可以看到,其需要如下几个参数:

  • corePoolSize必需):核心线程数。默认情况下,核心线程会一直存活,但是当将 allowCoreThreadTimeout 设置为 true 时,核心线程也会超时回收。
  • maximumPoolSize必需):线程池所能容纳的最大线程数。当活跃线程数达到该数值后,后续的新任务将会阻塞。
  • keepAliveTime必需):线程闲置超时时长。如果超过该时长,非核心线程就会被回收。如果将 allowCoreThreadTimeout 设置为 true 时,核心线程也会超时回收。
  • unit必需):指定 keepAliveTime 参数的时间单位。常用的有:TimeUnit.MILLISECONDS(毫秒)、TimeUnit.SECONDS(秒)、TimeUnit.MINUTES(分)。
  • workQueue必需):任务队列。通过线程池的 execute() 方法提交的 Runnable 对象将存储在该参数中。其采用阻塞队列实现。
  • threadFactory可选):线程工厂。用于指定为线程池创建新线程的方式。
  • handler可选):拒绝策略。当达到最大线程数时需要执行的饱和策略。

线程池的使用流程如下:

// 创建线程池 
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(CORE_POOL_SIZE,
                                             MAXIMUM_POOL_SIZE,
                                             KEEP_ALIVE,
                                             TimeUnit.SECONDS,
                                             sPoolWorkQueue,
                                             sThreadFactory);
// 向线程池提交任务
threadPool.execute(new Runnable() {
    @Override
    public void run() {
        ... // 线程执行的任务
    }
});
// 关闭线程池
threadPool.shutdown(); // 设置线程池的状态为SHUTDOWN,然后中断所有没有正在执行任务的线程
threadPool.shutdownNow(); // 设置线程池的状态为 STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表 

三、 功能线程池

嫌上面使用线程池的方法太麻烦?其实Executors已经为我们封装好了 4 种常见的功能线程池,如下:

  • 定长线程池(FixedThreadPool)
  • 定时线程池(ScheduledThreadPool )
  • 可缓存线程池(CachedThreadPool)
  • 单线程化线程池(SingleThreadExecutor)

5.1 定长线程池(FixedThreadPool)

创建方法的源码:

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
    return new ThreadPoolExecutor(nThreads, nThreads,
                                  0L, TimeUnit.MILLISECONDS,
                                  new LinkedBlockingQueue<Runnable>(),
                                  threadFactory);
}
  • 特点:只有核心线程,线程数量固定,执行完立即回收,任务队列为链表结构的有界队列。
  • 应用场景:控制线程最大并发数。

使用示例:

// 1. 创建定长线程池对象 & 设置线程池线程数量固定为3
ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
// 2. 创建好Runnable类线程对象 & 需执行的任务
Runnable task =new Runnable(){
  public void run() {
     System.out.println("执行任务啦");
  }
};
// 3. 向线程池提交任务
fixedThreadPool.execute(task);

5.2 定时线程池(ScheduledThreadPool )

创建方法的源码:

private static final long DEFAULT_KEEPALIVE_MILLIS = 10L;

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
    return new ScheduledThreadPoolExecutor(corePoolSize);
}
public ScheduledThreadPoolExecutor(int corePoolSize) {
    super(corePoolSize, Integer.MAX_VALUE,
          DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
          new DelayedWorkQueue());
}

public static ScheduledExecutorService newScheduledThreadPool(
        int corePoolSize, ThreadFactory threadFactory) {
    return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
public ScheduledThreadPoolExecutor(int corePoolSize,
                                   ThreadFactory threadFactory) {
    super(corePoolSize, Integer.MAX_VALUE,
          DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
          new DelayedWorkQueue(), threadFactory);
}
  • 特点:核心线程数量固定,非核心线程数量无限,执行完闲置 10ms 后回收,任务队列为延时阻塞队列。
  • 应用场景:执行定时或周期性的任务。

使用示例:

// 1. 创建 定时线程池对象 & 设置线程池线程数量固定为5
ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5);
// 2. 创建好Runnable类线程对象 & 需执行的任务
Runnable task =new Runnable(){
  public void run() {
     System.out.println("执行任务啦");
  }
};
// 3. 向线程池提交任务
scheduledThreadPool.schedule(task, 1, TimeUnit.SECONDS); // 延迟1s后执行任务
scheduledThreadPool.scheduleAtFixedRate(task,10,1000,TimeUnit.MILLISECONDS);// 延迟10ms后、每隔1000ms执行任务

5.3 可缓存线程池(CachedThreadPool)

创建方法的源码:

public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>(),
                                  threadFactory);
}
  • 特点:无核心线程,非核心线程数量无限,执行完闲置 60s 后回收,任务队列为不存储元素的阻塞队列。
  • 应用场景:执行大量、耗时少的任务。

使用示例:

// 1. 创建可缓存线程池对象
ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
// 2. 创建好Runnable类线程对象 & 需执行的任务
Runnable task =new Runnable(){
  public void run() {
     System.out.println("执行任务啦");
  }
};
// 3. 向线程池提交任务
cachedThreadPool.execute(task);

5.4 单线程化线程池(SingleThreadExecutor)

创建方法的源码:

public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
    return new FinalizableDelegatedExecutorService
        (new ThreadPoolExecutor(1, 1,
                                0L, TimeUnit.MILLISECONDS,
                                new LinkedBlockingQueue<Runnable>(),
                                threadFactory));
}
  • 特点:只有 1 个核心线程,无非核心线程,执行完立即回收,任务队列为链表结构的有界队列。
  • 应用场景:不适合并发但可能引起 IO 阻塞性及影响 UI 线程响应的操作,如数据库操作、文件操作等。

使用示例:

// 1. 创建单线程化线程池
ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
// 2. 创建好Runnable类线程对象 & 需执行的任务
Runnable task =new Runnable(){
  public void run() {
     System.out.println("执行任务啦");
  }
};
// 3. 向线程池提交任务
singleThreadExecutor.execute(task);

5.5 对比

6 Executors 的 4 个功能线程的弊端

Executors 的 4 个功能线程池虽然方便,但现在已经不建议使用了,而是建议直接通过使用 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。

其实 Executors 的 4 个功能线程有如下弊端:

  • FixedThreadPoolSingleThreadExecutor:主要问题是堆积的请求处理队列均采用 LinkedBlockingQueue,可能会耗费非常大的内存,甚至 OOM。
  • CachedThreadPoolScheduledThreadPool:主要问题是线程数最大数是 Integer.MAX_VALUE,可能会创建数量非常多的线程,甚至 OOM。

四、线程池配置合理线程数

合理配置线程池你是如何考虑的?

CPU密集型

CPU密集的意思是该任务需要大量的运算,而没有阻塞,CPU一直全速运行。

CPU密集任务只有在真正的多核CPU上才可能得到加速(通过多线程),
而在单核CPU上,无论你开几个模拟的多线程该任务都不可能得到加速,因为CPU总的运算能力就那些。

CPU密集型任务配置尽可能少的线程数量:

一般公式:(CPU核数+1)个线程的线程池

lO密集型

由于IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如CPU核数 * 2。

IO密集型,即该任务需要大量的IO,即大量的阻塞。

在单线程上运行IO密集型的任务会导致浪费大量的CPU运算能力浪费在等待。

所以在IO密集型任务中使用多线程可以大大的加速程序运行,即使在单核CPU上,这种加速主要就是利用了被浪费掉的阻塞时间。

IO密集型时,大部分线程都阻塞,故需要多配置线程数:

参考公式:CPU核数/ (1-阻塞系数)

阻塞系数在0.8~0.9之间, 比如8核CPU:8/(1-0.9)=80个线程数

五、实际工作中线程池使用哪一个

(超级大坑警告)你在工作中单一的/固定数的/可变的三种创建线程池的方法,你用那个多?
答案是一个都不用,我们生产上只能使用自定义的

Executors 中JDK已经给你提供了,为什么不用?

3.【强制】线程资源必须通过线程池提供,不允许在应用中自行显式创建线程。

说明:线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源的开销,解决资源不足的问题。 如果不使用线程池,有可能造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。

4.【强制】线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。

说明:Executors 返回的线程池对象的弊端如下:

1) FixedThreadPool 和 SingleThreadPool: 允许的请求队列长度为 Integer.MAX_VALUE,可能会堆积大量的请求,从而导致 OOM。

2) CachedThreadPool: 允许的创建线程数量为 Integer.MAX_VALUE,可能会创建大量的线程,从而导致 OOM。

阿里巴巴《Java 开发手册》

学习视频: - 从Java构建线程的方式 到 线程池ThreadPoolExecutor源码剖析
参考笔记:- Java 多线程:彻底搞懂线程池

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/549221.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1.Hyperledger Fabric架构介绍

&#xff08;1&#xff09;Hyperledger定义&#xff1a; Hyperledger是一个开放源代码的区块链项目合作组织&#xff0c;旨在推动跨行业的企业级区块链解决方案的发展。该项目由Linux基金会于2015年发起&#xff0c;致力于建立一个可靠、安全和可扩展的区块链框架和工具集。Hy…

堆结构 - 大根堆、小根堆

在开发语言中&#xff0c;heap在使用层次的名字叫PriorityQueue&#xff08;优先级队列&#xff09;&#xff0c;PriorityQueue数据结构的名字就叫做堆&#xff0c;底层就是用堆结构实现的。 完全二叉树 空树也算是完全二叉树每一层都是满的也算是完全二叉树如果层不满&#…

魔改车钥匙实现远程控车:(番外)在macOS上安装使用MicroPython

前言 哈哈&#xff0c;各位可能会奇怪为啥上一篇文章还在说怎么在 ESP32C3 上安装 Arduino&#xff0c;现在怎么又变成了安装 MIcroPython。 其实是因为上次写 Arduino 还是我高中时候的事了&#xff0c;已经不太会了。 虽然 MIcroPython 我从来没有接触过&#xff0c;但是 …

Microsoft Office 2003的安装

哈喽&#xff0c;大家好。今天一起学习的是office2003的安装&#xff0c;这个老版本的office可是XP操作系统的老搭档了&#xff0c;有兴趣的小伙伴也可以来一起试试手。 一、测试演示参数 演示操作系统&#xff1a;Windows XP 不建议win7及以上操作系统使用 系统类型&#xff…

Springboot 搭建WebService客户端+服务端

WebService简介 Web Service技术&#xff0c; 能使得运行在不同机器上的不同应用无须借助附加的、专门的第三方软件或硬件&#xff0c; 就可相互交换数据或集成。依据Web Service规范实施的应用之间&#xff0c; 无论它们所使用的语言、 平台或内部协议是什么&#xff0c; 都可…

软件设计和架构设计

软件设计和架构设计 1.软件设计 1.1设计 设计是从架构 构件 接口以及系统其他特征定义的过程。 软件设计的结果必须描述系统的架构&#xff0c;系统如何分解和组织构件。 描述构件间的接口。 描述构件必须详细到可进一步构造的程度。 设计是把分析模型转换成设计模型的过…

三个帮助你整理信息的桌面 WiKi

如果你想在桌面上感受 wiki&#xff0c;而不用做那些复杂的工作&#xff0c;这很容易做到。这有一些轻量级 wiki&#xff0c;可以帮助你组织你的信息、跟踪你的任务、管理你的笔记等等。 这个词时&#xff0c;可能会想到 MediaWiki 或 DokuWiki 这样的例子。它们开源、好用、强…

Go 并发之channel(通道)

一、前言 作为 Go 语言最有特色的数据类型&#xff0c;通道&#xff08;channel&#xff09;完全可以与 goroutine&#xff08;也可称为 go 程&#xff09;并驾齐驱&#xff0c;共同代表 Go 语言独有的并发编程模式和编程哲学。 通道&#xff08;channel&#xff09;可以利用…

TOGAF架构开发方法—G阶段:实施治理

本章提供了对实现的体系结构监督。 一、目标 G阶段的目标是&#xff1a; 通过实施项目确保符合目标架构为解决方案和任何实施驱动的架构更改请求执行适当的架构管理功能 二、 输入 本节定义阶段 G 的输入。 1 、企业外部参考物质 架构参考资料 2、 非架构输入 架构工作请…

K8s之污点、容忍度与Pod重启策略详解

文章目录 一、污点-Taint二、容忍度-Tolerations二、Pod重启策略1、Pod常见状态2、Pod重启策略 一、污点-Taint 在 Kubernetes 中&#xff0c;污点&#xff08;Taint&#xff09;是一种标记&#xff0c;用于标识一个Node节点上的某些资源或条件不可用或不可接受。当一个节点被…

基于springboot的社区疫情防控平台

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SpringBoot 前端&#xff1a;HTML、Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 前言 基于springboot…

模板类与友元

目录 分类 一、非模板友元&#xff1a;友元函数不是模板函数&#xff0c;而是利用模板类参数生成的函数&#xff1b; 代码 分析 运行结果 二、约束模板友元&#xff1a;模板类实例化时&#xff0c;每个实例化的类对应一个友元函数&#xff1b;并且这个模板友元适用多种类模…

AtCoder Beginner Contest 302(A-D)

TOYOTA MOTOR CORPORATION Programming Contest 2023#2 (AtCoder Beginner Contest 302) Contest Duration: 2023-05-20(Sat) 20:00 - 2023-05-20(Sat) 21:40 (local time) (100 minutes) 暴搜场&#xff0c;1个小时出了4道&#xff0c;以为很有机会&#xff0c;结果E交了十发没…

栈和队列OJ题:LeetCode--232.用栈实现队列

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;今天给大家带来的是LeetCode--232.用栈实现队列 数 据 结 构 专 栏&#xff1a;数据结构 个 人 主 页 &#xff1a;stackY、 LeetCode 专 栏 &#xff1a;LeetCode刷题训练营 LeetCode--232.用栈实现队列&#xff…

使用 compose 封装一个通用的关于页面库

前言 现在很多 APP 都会有一个关于页面&#xff0c;用于放置一些必要的信息&#xff0c;例如&#xff1a;版本号、版权信息等。有时也会用于展示设置、帮助、反馈等功能的入口。 通常&#xff0c;我们都会自己挨个创建不同的 item &#xff0c;略显繁琐。 所以我就在想&…

ad18学习笔记一

如何自学altium designer如何自学altium designer&#xff1f; - 知乎如何自学altium designer 这里面有ad官方推荐的b站的视频&#xff1a;可以直接去b站关注ad官方账号 AltiumChina&#xff0c;它本身就发布了很多实用教程。 在知乎的这个界面也有Altium Designer Ver18_官…

万字长文,为你送上全网最全Flutter学习资料!

话不多说直接上目录&#xff0c;干货较多内容很长&#xff0c;建议先收藏供以后慢慢查阅。 目录 文章视频组件导航模板插件框架实验性游戏开源App实用工具社区书籍福利 文章 介绍 Google IO 2018 [1.1K&#x1f44f;] - 构建美观&#xff0c;灵活的用户界面。Presentation …

Stm32待机模式的进入与唤醒

1.基础介绍 1-1&#xff1a;单片机的“低功耗模式”&#xff0c;像是手机的待机模式&#xff0c;不同于正常运行模式&#xff0c;处于一种省电省资源的状态 1-2&#xff1a;在运行情况下&#xff0c;HCLK为cpu提供时钟&#xff0c;cortex-m3内核执行程序的代码&#xff0c;如…

CleanMyMac X2023Mac上下载最多的第三个实用程序

CleanMyMac X是一款广为人知的Mac优化应用程序&#xff0c;目前是Mac上下载最多的第三个实用程序&#xff0c;并获得苹果官方认证。为了满足用户更好体验Mac和新版系统&#xff0c;它们带来了新功能。这新功能可以帮助用户更好的监控Mac的健康状况&#xff0c;让用户畅享Mac新系…

base编码

https://www.qqxiuzi.cn/bianma/base64.htm 一眼就解密 一看就晓得是base64&#xff0c;问就是做多了&#xff08;base64大小写加数字和&#xff09; base编码概念 此博客列举的比较多&#xff0c;我信 https://blog.csdn.net/qq_53105813/article/details/127626450 简单聊几个…