【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)

news2025/1/9 1:29:43
BLOOM模型结构源码解析(单机版)

​ 本文基于transformers中BLOOM模型代码来解析BLOOM的原理及实现。

相关博客
【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)
【自然语言处理】【大模型】极低资源微调大模型方法LoRA以及BLOOM-LORA实现代码
【深度学习】【分布式训练】Collective通信操作及Pytorch示例
【自然语言处理】【大模型】Chinchilla:训练计算利用率最优的大语言模型
【自然语言处理】【大模型】大语言模型BLOOM推理工具测试
【自然语言处理】【大模型】GLM-130B:一个开源双语预训练语言模型
【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍
【自然语言处理】【大模型】BLOOM:一个176B参数且可开放获取的多语言模型
【自然语言处理】【ChatGPT系列】FLAN:微调语言模型是Zero-Shot学习器
【自然语言处理】【ChatGPT系列】ChatGPT的智能来自哪里?
【自然语言处理】【ChatGPT系列】大模型的涌现能力

一、掩码(Mask)

1.1 原理

​ BLOOM使用的是Transformer中的Decoder,其使用到的Mask有两个:(1) 构建batch时的padding需要被mask;(2) Decoder中,当前token只能见到其左侧的token,因此需要对注意力进行mask。称前一种为Padding Mask,后一种为Causal Mask。

Causal Mask。给定一个长度为 n n n的序列,其注意力分数矩阵为 A ∈ R n × n A\in\mathbb{R}^{n\times n} ARn×n A i , j A_{i,j} Ai,j表示query q i \textbf{q}_i qi和key k j \textbf{k}_j kj的注意力分数。但是,生成任务是从左到右的,其在生成过程中没有办法看到其右侧的tokens。为了在训练时也保证"仅左侧tokne可见",可以通过Causal Mask来实现。具体来说,就是mask掉注意力矩阵 A A A的上三角。下图就是 n = 5 n=5 n=5情况下的Causal Mask。

在这里插入图片描述

Padding Mask。模型训练时,由于输入样本的长度不等,因此需要padding到相等长度。但是,在模型前后向传播时需要忽略掉padding的部分,因此需要Padding Mask。Padding Mask也是针对注意力分数矩阵 A A A的,因此其形状下也要与 A A A相同。下图是长度为3,但被padding至5的Padding Mask例子。

在这里插入图片描述

注意力分数矩阵的完整Mask就是"Causal Mask或Padding Mask",过程如下图。

在这里插入图片描述

1.2 代码

Causal Mask

def _make_causal_mask(
    input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
    """
    input_ids_shape:(batch_size, seq_length)
    """
    batch_size, target_length = input_ids_shape
    mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
    # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
    seq_ids = torch.arange(target_length, device=device)
    mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]

    if past_key_values_length > 0:
        mask[:, :past_key_values_length] = False

    expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
    return expanded_mask

Padding Mask

def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
    """
    mask: (batch_size, seq_length)
    """
    batch_size, src_length = mask.shape
    tgt_length = tgt_length if tgt_length is not None else src_length

    expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
    return expanded_mask.expand(batch_size, 1, tgt_length, src_length)

二、激活函数

bloom的激活函数采用 GELU \text{GELU} GELU GELU \text{GELU} GELU在实现时可以近似为
GELU ( x ) ≈ 0.5 x ( 1 + tanh ⁡ ( 2 π ( x + 0.044715 x 3 ) ) ) \text{GELU}(x)\approx 0.5x(1+\tanh(\sqrt{\frac{2}{\pi}}(x+0.044715x^3))) GELU(x)0.5x(1+tanh(π2 (x+0.044715x3)))

def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor:
    """
    GELLU前向
    """
    return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))


def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
    """
    GELU后向
    """
    x = x[0]  # x is a tuple of 1 element, needs to unpack it first
    tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
    # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
    ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
    return ff * g

class GeLUFunction(torch.autograd.Function):
    """
    完整的GeLU激活函数
    """
    @staticmethod
    def forward(ctx, input: torch.Tensor) -> torch.Tensor:
        ctx.save_for_backward(input)
        return bloom_gelu_forward(input)

    @staticmethod
    def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
        input = ctx.saved_tensors
        tmp = bloom_gelu_back(grad_output, input)
        return tmp
    
class BloomGelu(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.training:
            return GeLUFunction.apply(x)
        else:
            # 非训练时,只执行前向传播
            return bloom_gelu_forward(x)

三、MLP层

MLP ( X , R ) = dropout ( GELU ( X W 1 ) W 2 ) + R ; X 是输入、 R 是残差 \text{MLP}(X, R) = \text{dropout}(\text{GELU}(XW_1)W_2)+R; \quad X是输入、R是残差 MLP(X,R)=dropout(GELU(XW1)W2)+R;X是输入、R是残差

class BloomMLP(nn.Module):
    def __init__(self, config: BloomConfig):
        super().__init__()
        hidden_size = config.hidden_size
        
        # 预训练时的张量并行度
        self.pretraining_tp = config.pretraining_tp
        self.slow_but_exact = config.slow_but_exact
        # h至4h的全链接层
        self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size)
        self.gelu_impl = BloomGelu()
        # 4h到h的全链接层
        self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size)
        # dorpout
        self.hidden_dropout = config.hidden_dropout

    def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
        """
        hidden_states: (batch_size, seq_length, hidden_size)
        residual与hidden_states形状相同
        """
        # 全链接层+GLUE
        hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
        
        # 将hidden_states从4h在映射会h
        # intermediate_output的形状同hidden_states
        if self.pretraining_tp > 1 and self.slow_but_exact:
            # 判断预训练时是否使用了张量并行,且要采用慢且精确的前向传播
            intermediate_output = torch.zeros_like(residual)
            slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
            for i in range(self.pretraining_tp):
                intermediate_output = intermediate_output + F.linear(
                    hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
                    self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)],
                )
        else:
            intermediate_output = self.dense_4h_to_h(hidden_states)
        # 对intermediate_output执行dropout后,加上残差residual
        output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)

        return output

四、ALiBi:注入位置信息

1. 原理

​ BLOOM使用ALiBi来向模型注入位置信息。给定一个长度为 L L L的输入序列, 那么每个注意力头的第 i i i个query q i ∈ R 1 × d ( 1 ≤ i ≤ L ) \textbf{q}_i\in\mathbb{R}^{1\times d}(1\leq i\leq L) qiR1×d(1iL)针对前 i i i个key K ∈ R i × d \textbf{K}\in\mathbb{R}^{i\times d} KRi×d的注意力分数为
softmax ( q i K ⊤ ) \text{softmax}(\textbf{q}_i\textbf{K}^\top) softmax(qiK)
在使用ALiBi时,不需要向网络添加位置嵌入。仅需要在query-key点积中添加静态偏差即可。
softmax ( q i K ⊤ + m ⋅ [ − ( i − 1 ) , … , − 2 , − 1 , 0 ] ) \text{softmax}(\textbf{q}_i\textbf{K}^\top+m\cdot[-(i-1),\dots,-2,-1,0]) softmax(qiK+m[(i1),,2,1,0])
其中 m m m是与注意力头相关的斜率(slope),也就是超参; [ − ( i − 1 ) , … , − 2 , − 1 , 0 ] [-(i-1),\dots,-2,-1,0] [(i1),,2,1,0]其实就是 q i \textbf{q}_i qi与各个key的相对距离。

​ 对于8个注意力头, m m m是等比序列: 1 2 1 , 1 2 2 , … , 1 2 8 \frac{1}{2^1},\frac{1}{2^2},\dots,\frac{1}{2^8} 211,221,,281。对于16个注意力头的模型, m m m则是等比序列: 1 2 0.5 , 1 2 1 , 1 2 1.5 , … , 1 8 \frac{1}{2^{0.5}},\frac{1}{2^1},\frac{1}{2^{1.5}},\dots,\frac{1}{8} 20.51,211,21.51,,81

2. 实现

def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
    batch_size, seq_length = attention_mask.shape
    # closet_power_of_2是与num_head接近的2的次方
    # 例如:num_heads为5/6/7时,closest_power_of_2为4
    closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
    # 计算斜率
    base = torch.tensor(
        2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
    )
    powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
    slopes = torch.pow(base, powers)
    
    # 注意力头数量不是2的次方
    if closest_power_of_2 != num_heads:
        extra_base = torch.tensor(
            2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
        )
        num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
        extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
        slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
        
    # 相对距离
    arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
    # alibi会与query和key的乘积相加
    # alibi的形状为[batch_size, num_heads, query_length, key_length]
    alibi = slopes[..., None] * arange_tensor
    return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)

​ 实现时,为了避免斜率计算中的除法操作,按如下的方式计算斜率:
base = 2 − ( 2 − ( log ⁡ 2 n − 3 ) ) = 1 2 8 / n = 1 2 8 n power = [ 1 , … , n ] \begin{align} &\text{base} = 2^{-(2^{-(\log_2 n-3)})}=\frac{1}{2^{8/n}}=\frac{1}{\sqrt[n]{2^8}} \\ &\text{power} = [1,\dots, n] \\ \end{align} base=2(2(log2n3))=28/n1=n28 1power=[1,,n]

函数的返回值就是 m ⋅ [ − ( i − 1 ) , … , − 2 , − 1 , 0 ] m\cdot[-(i-1),\dots,-2,-1,0] m[(i1),,2,1,0]

五、多头注意力层

1. 原理

​ BLOOM多头注意力就是在标准多头注意力上添加ALiBi。

单头注意力
Q = W q X K = W k X V = W v X Attention ( Q , K , V , A ) = softmax ( Q K T d k + A ) V \begin{align} Q &= W_q X \\ K &= W_k X \\ V &= W_v X \\ \text{Attention}(Q,K,V,A) &= \text{softmax}(\frac{QK^T}{\sqrt{d_k}}+A)V \end{align} QKVAttention(Q,K,V,A)=WqX=WkX=WvX=softmax(dk QKT+A)V
其中, X X X是输入, W q , W k , W v W_q,W_k,W_v Wq,Wk,Wv分别是query、key、value的投影矩阵, A A A是ALiBi偏差矩阵。

多头注意力

​ 多头注意力就是将多个单头注意力的结果拼接起来。
head i = Attention ( Q i , K i , V i , A i ) MultiHead ( Q , K , V , A ) = Concat ( head 1 , … , head h ) W o \begin{align} \text{head}_i&=\text{Attention}(Q_i,K_i,V_i,A_i) \\ \text{MultiHead}(Q,K,V,A)&=\text{Concat}(\text{head}_1,\dots,\text{head}_h)W_o \end{align} headiMultiHead(Q,K,V,A)=Attention(Qi,Ki,Vi,Ai)=Concat(head1,,headh)Wo

2. 实现

class BloomAttention(nn.Module):
    def __init__(self, config: BloomConfig):
        super().__init__()
        # 预训练时,张量并行相关的参数(这里不需要关注)
        self.pretraining_tp = config.pretraining_tp
        self.slow_but_exact = config.slow_but_exact
        
        self.hidden_size = config.hidden_size
        self.num_heads = config.n_head
        self.head_dim = self.hidden_size // self.num_heads
        self.split_size = self.hidden_size
        self.hidden_dropout = config.hidden_dropout

        if self.head_dim * self.num_heads != self.hidden_size:
            raise ValueError(
                f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
                f" {self.num_heads})."
            )

        # Layer-wise attention scaling
        self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
        self.beta = 1.0
        
        # query、key、value的投影层
        self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
        # 输出投影层
        self.dense = nn.Linear(self.hidden_size, self.hidden_size)
        self.attention_dropout = nn.Dropout(config.attention_dropout)
        
	def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        fused_qkv: [batch_size, seq_length, 3*hidden_size]
        """
        batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
        # 1. 将Q、K、V拆分出来;2. 拆分出多个头
        fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
        return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
    
    def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
        # 目标:batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
        batch_size_and_num_heads, seq_length, _ = x.shape
        batch_size = batch_size_and_num_heads // self.num_heads
        # 将batch_size拆分出来:batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
        x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
        # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
        x = x.permute(0, 2, 1, 3)
        # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
        return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
    
    def forward(
        self,
        hidden_states: torch.Tensor,
        residual: torch.Tensor,
        alibi: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
    ):
        # [batch_size, seq_length, 3 x hidden_size]
        # 一次性得到投影的Q、K、V,减少执行矩阵乘法的次数
        fused_qkv = self.query_key_value(hidden_states)
        
        # 多头拆分
        # 3 x [batch_size, seq_length, num_heads, head_dim]
        (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
        batch_size, q_length, _, _ = query_layer.shape
        
        query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
        key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
        value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
        
        # 处理传入的key和value(忽略)
        if layer_past is not None:
            past_key, past_value = layer_past
            key_layer = torch.cat((past_key, key_layer), dim=2)
            value_layer = torch.cat((past_value, value_layer), dim=1)

        _, _, kv_length = key_layer.shape
        
        # 忽略
        if use_cache is True:
            present = (key_layer, value_layer)
        else:
            present = None
            
        # [batch_size * num_heads, q_length, kv_length]
        # inv_norm_factor*(query_layer*key_layer) + beta*alibi
        matmul_result = alibi.baddbmm(
            batch1=query_layer,
            batch2=key_layer,
            beta=self.beta,
            alpha=self.inv_norm_factor,
        )
        
        # [batch_size, num_heads, q_length, kv_length]
        attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
        
        # 若输入类型是float16,则将注意力分数转换为float32
        # 注意力分数的精度会显著影响模型的效果
        input_dtype = attention_scores.dtype
        if input_dtype == torch.float16:
            attention_scores = attention_scores.to(torch.float)
        
        # mask
        attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
        # softmax
        attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)

        # [batch_size, num_heads, q_length, kv_length]
        # dropout
        attention_probs = self.attention_dropout(attention_probs)
        
        # 若传入注意力头的mask
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        # attention_probs_reshaped:[batch_size x num_heads, q_length, kv_length]
        attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)

        # context_layer: [batch_size * num_heads, q_length, head_dim]
        # 乘以value
        context_layer = torch.bmm(attention_probs_reshaped, value_layer)
        
        # context_layer: batch_size, seq_length, num_heads * head_dim
        # 合并多头
        context_layer = self._merge_heads(context_layer)

        # 输出投影
        if self.pretraining_tp > 1 and self.slow_but_exact:
            slices = self.hidden_size / self.pretraining_tp
            output_tensor = torch.zeros_like(context_layer)
            for i in range(self.pretraining_tp):
                output_tensor = output_tensor + F.linear(
                    context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
                    self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
                )
        else:
            output_tensor = self.dense(context_layer)
            
        # dropout+残差
        output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)

        outputs = (output_tensor, present)
        if output_attentions:
            outputs += (attention_probs,)

        return outputs

六、BloomBlock

在这里插入图片描述

class BloomBlock(nn.Module):
    def __init__(self, config: BloomConfig):
        super().__init__()
        hidden_size = config.hidden_size

        self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.num_heads = config.n_head
        self.self_attention = BloomAttention(config)
        self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        self.mlp = BloomMLP(config)

        self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
        self.hidden_dropout = config.hidden_dropout

    def forward(
        self,
        hidden_states: torch.Tensor,
        alibi: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        head_mask: Optional[torch.Tensor] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
    ):
        # hidden_states: [batch_size, seq_length, hidden_size]
        # 先对hidden_states进行Layer Norm
        layernorm_output = self.input_layernorm(hidden_states)

        # 残差
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = hidden_states

        # Self attention.
        attn_outputs = self.self_attention(
            layernorm_output,
            residual,
            layer_past=layer_past,
            attention_mask=attention_mask,
            alibi=alibi,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )

        attention_output = attn_outputs[0]

        outputs = attn_outputs[1:]

        layernorm_output = self.post_attention_layernorm(attention_output)

        # Get residual
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = attention_output

        # MLP.
        output = self.mlp(layernorm_output, residual)

        if use_cache:
            outputs = (output,) + outputs
        else:
            outputs = (output,) + outputs[1:]

        return outputs  # hidden_states, present, attentions

七、BloomModel

在这里插入图片描述

class BloomModel(BloomPreTrainedModel):
    def __init__(self, config: BloomConfig):
        super().__init__(config)
        self.embed_dim = config.hidden_size
        self.num_heads = config.n_head
        # Embedding + LN Embedding
        self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
        self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
        # BloomBlocks
        self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)])
        # 最终Layer Norm
        self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
        self.gradient_checkpointing = False
        self.post_init()

    def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
        """
        封装build_alibi_tensor函数
        """
        return build_alibi_tensor(attention_mask, num_heads, dtype)

    def get_input_embeddings(self):
        return self.word_embeddings

    def _prepare_attn_mask(
        self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
    ) -> torch.BoolTensor:
        # 构建注意力分数的mask句子,见文章第一节的掩码(Mask)部分
        combined_attention_mask = None
        device = attention_mask.device
        _, src_length = input_shape

        if src_length > 1:
            # 构建causal mask
            combined_attention_mask = _make_causal_mask(
                input_shape, device=device, past_key_values_length=past_key_values_length
            )

        # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
        # 构建padding mask
        expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
        # 两种mask合并
        combined_attention_mask = (
            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
        )
        return combined_attention_mask

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.word_embeddings = new_embeddings

    @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPastAndCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **deprecated_arguments,
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
        ### (开始)一些输入输出和参数设置,可以忽略
        if deprecated_arguments.pop("position_ids", False) is not False:
            # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
            warnings.warn(
                "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
                " passing `position_ids`.",
                FutureWarning,
            )
        if len(deprecated_arguments) > 0:
            raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.h))
        ### (结束)一些输入输出和参数设置,可以忽略

        # 准备head mask,1.0表示保留注意力头
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
            
        # 在embedding后添加了layernorm
        hidden_states = self.word_embeddings_layernorm(inputs_embeds)

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        
        ### (开始) gradient checkpointing和past_key_values处理,忽略
        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # Compute alibi tensor: check build_alibi_tensor documentation
        seq_length_with_past = seq_length
        past_key_values_length = 0
        if past_key_values[0] is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length
        ### (结束) gradient checkpointing和past_key_values处理,忽略
        
        # 构建注意力分数掩码
        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
        else:
            attention_mask = attention_mask.to(hidden_states.device)

        alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)

        causal_mask = self._prepare_attn_mask(
            attention_mask,
            input_shape=(batch_size, seq_length),
            past_key_values_length=past_key_values_length,
        )
        
        # BloomBlock前向传播
        for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    alibi,
                    causal_mask,
                    layer_past,
                    head_mask[i],
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=causal_mask,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    alibi=alibi,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

        # Add last hidden state
        hidden_states = self.ln_f(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/530210.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Win32程序入口识别,定位回调函数,具体事件处理的定位,ESP寻址方式,压栈方式复习

本专栏上一篇文章带领大家编写了第一个Windows程序&#xff0c;并且带领大家了解了Windows消息机制&#xff0c;如果大家还是不了解的话&#xff0c;可以到我的另一篇专栏中深入学习一下windows消息&#xff0c;Windows消息循环的原理&#xff0c;点击这里就可以查看啦。 我们在…

Gateway网关详解及实践---SpringCloud组件(五)

Gateway网关详解及实践 一 简介1.1介绍1.2.GateWay核⼼概念1.3.GateWay核心功能 二Gateway入门案例2.1 gateway依赖2.2 gateway配置2.3 gateway测试 三Gateway面向服务的路由3.1.门案例问题3.2.gateway-server结合eureka步骤3.2.1.添加Eureka客户端依赖3.2.2.添加Eureka配置3.2…

MySQL进阶-MySQL体系结构和常见存储引擎的比较

本文介绍MySQL体系结构以及存储引擎&#xff08;InnoDB、MyISAM、Memory&#xff09;的比较 文章目录 MySQL 体系结构连接层服务层连接池系统管理和控制工具SQL接口解析器查询优化器缓存 引擎层存储层 存储引擎InnoDBMyISAMMemory区别 MySQL 体系结构 连接层 最上层是一些客户…

Rust 正式发布八周年纪念日 2023.5.15

图源&#xff1a;维基百科 目录 Rust 1. Rust的特点 1.1 安全性 1.2 并发性 1.3 性能 1.4 代码可读性 2. 使用场景 2.1 系统编程 2.2 Web开发 2.3 游戏开发 3. 与其他语言的对比 4. 代码示例 1. Hello, World! 2. 简单的函数 3. 变量绑定和变量类型推断 4. 结…

dayday60-120

目录 60 申论强化361 申论强化462 模考大赛错题63 言语真题164 言语真题65 言语真题366 判断真题1676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 60 申论强化3 1.公文题的格式不允许丢…

Vector - CAPL - CAN消息自动化设置

目录 canGetDataLength -- 获取CAN消息有效负载长度 代码示例 canOutputErrorFrame -- 模拟发送错误帧消息 代码示例 isStdId & isExtId -- 判断报文是标准帧&扩展帧 代码示例 mkExtId -- 将标准帧转换为扩展帧 代码示例 valOfId -- CAN消息的长值标识符 代…

基于SpringBoot的原创歌曲平台的设计与实现

背景 原创歌曲分享平台&#xff0c;为了随时随地查看原创歌曲分享信息提供了便捷的方法&#xff0c;更重要的是大大的简化了管理员管理原创歌曲分享信息的方式方法&#xff0c;更提供了其他想要了解原创歌曲分享信息及运作情况以及挑选方便快捷的可靠渠道。相比于传统原创歌曲…

六级备考33天|CET-SET6|六级口语|备考手册|考试样题|热门话题

目录 样题 1 The benefits of college athletics 2 The adverse impact of cheating on examinations 3 My view on working part-time during ones college years 4 Should students take part in extracurricular activities 5 If you choose overseas studies 6 The…

基于stm32物联网开发板(3)--SYN6288语音模块

基于stm32物联网开发板(3)–SYN6288语音模块 1.SYN6288语音模块展示示例 SYN6288语音模块 2.概述 SYN6288-A语音合成模块是一款性价比更高&#xff0c;效果更自然的一款中高端语音合技术 。 SYN6288-A通过异步串口接收待合成的文本&#xff0c;实现文本到声音&#xff08;TTS&…

SPL即将取代SQL?

先来看看两者的定义。 SQL&#xff1a;结构化查询语言。 SPL&#xff1a;结构化数据计算语言。 既然是比较文章&#xff0c;那必然是要突出一方的优势。 以下是SQL的痛点以及SPL的优点&#xff1a; 1.SQL缺乏离散性&#xff0c;集合化不彻底&#xff1b;SPL离散与集合充分结…

如何删除 Docker 镜像、容器和卷?

Docker 是一款常用的容器化平台&#xff0c;通过 Docker 可以将应用程序打包成一个独立的容器&#xff0c;方便地在不同的环境中运行。随着 Docker 的广泛使用&#xff0c;删除 Docker 镜像、容器和卷的操作也变得非常重要。在本文中&#xff0c;我们将介绍如何删除 Docker 镜像…

Python消费Kafka与优化

一.背景与问题 之前使用kafka-python库进行消费数据处理业务逻辑&#xff0c;但是没有深入里面的一些细节&#xff0c;导致会遇到一些坑。正常普通我们常见的一个消费者代码:(假设topic的分区数是20个) from kafka import KafkaConsumerbootstrap_servers [localhost:9092] g…

vim命令大全,非常详细,强烈建议收藏!

Vim是一款常用的文本编辑器&#xff0c;具有强大的功能和高度的可定制性。在本文中&#xff0c;我们将详细介绍Vim的常用命令&#xff0c;并提供相关的示例。如果您是初学者或已经熟练使用Vim&#xff0c;这篇文章都能为您提供帮助。 基本命令 以下是一些基本的Vim命令&#x…

一文足矣:Unity行为树

目录 前言 unity行为树简介 一个简单的敌人AI 正文 个人对行为树的理解 有限状态机与行为树 基本框架 BTNode DataBase 行为树入口 行为树的事件GraphEvent 发送事件 监听事件 脚本发送事件 行为树的管理&操作 一、操作单颗树 二、管理所有树 自定义Task任务 …

python字符串的三种定义方式

之前我们讲过 一些字符串的定义 但当时是说 被双引号包裹的就是字符串 其实并不是特别严谨 这个叫双引号的定义方式 也没错 也只有字符串会被双引号包裹 但还有其他的定义方式 这里 还是先说答案 三种定义方式分别是 单引号定义 双引号定义 三引号定义 参考代码如下 #单引定义…

《点云处理算法》——GROR配准

GROR配准方法&#xff08;实时性挺好&#xff09; 一、 效果展示二、VS运行2.1 github源码下载2.2 编译运行 三、后续集成 一、 效果展示 二、VS运行 最近和小伙伴交流&#xff0c;他发现一个好用的配准方法&#xff0c;放在这里实现一下 2.1 github源码下载 gror 2.2 编译…

hexo,typecho,wordpress,hugo的官网下载及介绍

Typecho Typecho是一个轻量级的PHP博客系统&#xff0c;它的优点在于易于安装、使用和管理。Typecho使用MySQL数据库来存储文章和评论&#xff0c;同时支持主题和插件的自定义。Typecho适用于个人博客、技术博客等&#xff0c;因为它的易用性和可扩展性较高。 WordPress Word…

分析SpringBoot 底层机制【Tomcat 启动分析+Spring 容器初始化+Tomcat 如何关联Spring 容器之手动实现

分析SpringBoot 底层机制【Tomcat 启动分析Spring 容器初始化Tomcat 如何关联Spring 容器之手动实现 目录 分析SpringBoot 底层机制【Tomcat 启动分析Spring 容器初始化Tomcat 如何关联Spring 容器之手动实现 实现任务阶段1- 创建Tomcat, 并启动 说明: 分析代码实现 修改…

Android源码之Application与Activity创建时机分析

前言 我们知道App进程是由SystemServer启动的Android启动流程 那App对应的Application以及第一个Activity又是如何创建的呢&#xff1f; 源码分析(API 30为例) 我们从ActivityThread.main函数入手&#xff1b; public static void main(String[] args) {...ActivityThread t…

第八章结构型模式—装饰者模式

文章目录 装饰者模式解决的问题概念结构 案例使用装配者进行改进 使用场景JDK源码分析 静态代理和装饰者的区别 结构型模式描述如何将类或对象按某种布局组成更大的结构&#xff0c;有以下两种&#xff1a; 类结构型模式&#xff1a;采用继承机制来组织接口和类。对象结构型模式…