typescript学习笔记(下)

news2025/1/11 12:52:12

1、类型拓宽

所有通过 let 或 var 定义的变量、函数的形参、对象的非只读属性,如果满足指定了初始值且未显式添加类型注解的条件,那么它们推断出来的类型就是指定的初始值字面量类型拓宽后的类型,这就是字面量类型拓宽。
下面我们通过字符串字面量的示例来理解一下字面量类型拓宽:

let str = 'this is string'; // 类型是 string
  let strFun = (str = 'this is string') => str; // 类型是 (str?: string) => string;
  const specifiedStr = 'this is string'; // 类型是 'this is string'
  let str2 = specifiedStr; // 类型是 'string'
  let strFun2 = (str = specifiedStr) => str; // 类型是 (str?: string) => string;
  • 因为第 1~2 行满足了 let、形参且未显式声明类型注解的条件,所以变量、形参的类型拓宽为 string(形参类型确切地讲是
    string | undefined)。
  • 因为第 3 行的常量不可变更,类型没有拓宽,所以 specifiedStr 的类型是 ‘this is string’ 字面量类型。
  • 第 4~5 行,因为赋予的值 specifiedStr的类型是字面量类型,且没有显式类型注解,所以变量、形参的类型也被拓宽了。其实,这样的设计符合实际编程诉求。我们设想一下,如果 str2的类型被推断为 ‘this is string’,它将不可变更,因为赋予任何其他的字符串类型的值都会提示类型错误。

基于字面量类型拓宽的条件,我们可以通过如下所示代码添加显示类型注解控制类型拓宽行为。

{
  const specifiedStr: 'this is string' = 'this is string'; // 类型是 '"this is string"'
  let str2 = specifiedStr; // 即便使用 let 定义,类型是 'this is string'
}

实际上,除了字面量类型拓宽之外,TypeScript 对某些特定类型值也有类似 “Type Widening” (类型拓宽)的设计,下面我们具体来了解一下。
比如对 null 和 undefined 的类型进行拓宽,通过 let、var 定义的变量如果满足未显式声明类型注解且被赋予了 null 或 undefined 值,则推断出这些变量的类型是 any:

{
  let x = null; // 类型拓宽成 any
  let y = undefined; // 类型拓宽成 any

  /** -----分界线------- */
  const z = null; // 类型是 null

  /** -----分界线------- */
  let anyFun = (param = null) => param; // 形参类型是 null
  let z2 = z; // 类型是 null
  let x2 = x; // 类型是 null
  let y2 = y; // 类型是 undefined
}

注意:在严格模式下,一些比较老的版本中(2.0)null 和 undefined 并不会被拓宽成“any”。

2、类型缩小

在 TypeScript 中,我们可以通过某些操作将变量的类型由一个较为宽泛的集合缩小到相对较小、较明确的集合,这就是 “Type Narrowing”。
比如,我们可以使用类型守卫(后面会讲到)将函数参数的类型从 any 缩小到明确的类型,具体示例如下:

{
  let func = (anything: any) => {
    if (typeof anything === 'string') {
      return anything; // 类型是 string 
    } else if (typeof anything === 'number') {
      return anything; // 类型是 number
    }
    return null;
  };
}

在 VS Code 中 hover 到第 4 行的 anything 变量提示类型是 string,到第 6 行则提示类型是 number。

同样,我们可以使用类型守卫将联合类型缩小到明确的子类型,具体示例如下:

{
  let func = (anything: string | number) => {
    if (typeof anything === 'string') {
      return anything; // 类型是 string 
    } else {
      return anything; // 类型是 number
    }
  };
}

当然,我们也可以通过字面量类型等值判断(===)或其他控制流语句(包括但不限于 if、三目运算符、switch 分支)将联合类型收敛为更具体的类型,如下代码所示:

{
  type Goods = 'pen' | 'pencil' |'ruler';
  const getPenCost = (item: 'pen') => 2;
  const getPencilCost = (item: 'pencil') => 4;
  const getRulerCost = (item: 'ruler') => 6;
  const getCost = (item: Goods) =>  {
    if (item === 'pen') {
      return getPenCost(item); // item => 'pen'
    } else if (item === 'pencil') {
      return getPencilCost(item); // item => 'pencil'
    } else {
      return getRulerCost(item); // item => 'ruler'
    }
  }
}

在上述 getCost 函数中,接受的参数类型是字面量类型的联合类型,函数内包含了 if 语句的 3 个流程分支,其中每个流程分支调用的函数的参数都是具体独立的字面量类型。
那为什么类型由多个字面量组成的变量 item 可以传值给仅接收单一特定字面量类型的函数 getPenCostgetPencilCostgetRulerCost 呢?这是因为在每个流程分支中,编译器知道流程分支中的 item 类型是什么。比如 item === 'pencil' 的分支,item 的类型就被收缩为“pencil”。
事实上,如果我们将上面的示例去掉中间的流程分支,编译器也可以推断出收敛后的类型,如下代码所示:

const getCost = (item: Goods) =>  {
    if (item === 'pen') {
      item; // item => 'pen'
    } else {
      item; // => 'pencil' | 'ruler'
    }
  }

3、类型别名

类型别名用来给一个类型起个新名字。类型别名常用于联合类型。

type Message = string | string[];
let greet = (message: Message) => {
  // ...
};

注意:类型别名,诚如其名,即我们仅仅是给类型取了一个新的名字,并不是创建了一个新的类型。

4、交叉类型

交叉类型是将多个类型合并为一个类型。 这让我们可以把现有的多种类型叠加到一起成为一种类型,它包含了所需的所有类型的特性,使用&定义交叉类型。

{
  type Useless = string & number;
}

很显然,如果我们仅仅把原始类型、字面量类型、函数类型等原子类型合并成交叉类型,是没有任何用处的,因为任何类型都不能满足同时属于多种原子类型,比如既是 string 类型又是 number 类型。因此,在上述的代码中,类型别名 Useless 的类型就是个 never。
交叉类型真正的用武之地就是将多个接口类型合并成一个类型,从而实现等同接口继承的效果,也就是所谓的合并接口类型,如下代码所示:

  type IntersectionType = { id: number; name: string; } & { age: number };
  const mixed: IntersectionType = {
    id: 1,
    name: 'name',
    age: 18
  }

在上述示例中,我们通过交叉类型,使得 IntersectionType 同时拥有了 id、name、age 所有属性,这里我们可以试着将合并接口类型理解为求并集。

思考

这里,我们来发散思考一下:如果合并的多个接口类型存在同名属性会是什么效果呢?
如果同名属性的类型不兼容,比如上面示例中两个接口类型同名的 name 属性类型一个是 number,另一个是 string,合并后,name 属性的类型就是 number 和 string 两个原子类型的交叉类型,即 never,如下代码所示:

  type IntersectionTypeConfict = { id: number; name: string; } 
  & { age: number; name: number; };
  const mixedConflict: IntersectionTypeConfict = {
    id: 1,
    name: 2, // ts(2322) 错误,'number' 类型不能赋给 'never' 类型
    age: 2
  };

此时,我们赋予 mixedConflict 任意类型的 name 属性值都会提示类型错误。而如果我们不设置 name 属性,又会提示一个缺少必选的 name 属性的错误。在这种情况下,就意味着上述代码中交叉出来的 IntersectionTypeConfict 类型是一个无用类型。
如果同名属性的类型兼容,比如一个是 number,另一个是 number 的子类型、数字字面量类型,合并后 name 属性的类型就是两者中的子类型。
如下所示示例中 name 属性的类型就是数字字面量类型 2,因此,我们不能把任何非 2 之外的值赋予 name 属性。

 type IntersectionTypeConfict = { id: number; name: 2; } 
  & { age: number; name: number; };

  let mixedConflict: IntersectionTypeConfict = {
    id: 1,
    name: 2, // ok
    age: 2
  };
  mixedConflict = {
    id: 1,
    name: 22, // '22' 类型不能赋给 '2' 类型
    age: 2
  };

5、接口

在 TypeScript 中,我们使用接口(Interfaces)来定义对象的类型。

5.1 什么是接口

在面向对象语言中,接口(Interfaces)是一个很重要的概念,它是对行为的抽象,而具体如何行动需要由类(classes)去实现(implement)。
TypeScript 中的接口是一个非常灵活的概念,除了可用于[对类的一部分行为进行抽象]以外,也常用于对「对象的形状(Shape)」进行描述。

5.2 简单的例子

interface Person {
    name: string;
    age: number;
}
let tom: Person = {
    name: 'Tom',
    age: 25
};

上面的例子中,我们定义了一个接口 Person,接着定义了一个变量 tom,它的类型是 Person。这样,我们就约束了 tom 的形状必须和接口 Person 一致。

接口一般首字母大写。

定义的变量比接口少了一些属性是不允许的:

interface Person {
    name: string;
    age: number;
}
let tom: Person = {
    name: 'Tom'
};

// index.ts(6,5): error TS2322: Type '{ name: string; }' is not assignable to type 'Person'.
//   Property 'age' is missing in type '{ name: string; }'.

多一些属性也是不允许的:

interface Person {
    name: string;
    age: number;
}

let tom: Person = {
    name: 'Tom',
    age: 25,
    gender: 'male'
};

// index.ts(9,5): error TS2322: Type '{ name: string; age: number; gender: string; }' is not assignable to type 'Person'.
//   Object literal may only specify known properties, and 'gender' does not exist in type 'Person'.

可见,赋值的时候,变量的形状必须和接口的形状保持一致

5.3 可选 | 只读属性

interface Person {
  readonly name: string;
  age?: number;
}

只读属性用于限制只能在对象刚刚创建的时候修改其值。此外 TypeScript 还提供了 ReadonlyArray<T> 类型,它与 Array<T> 相似,只是把所有可变方法去掉了,因此可以确保数组创建后再也不能被修改。

let a: number[] = [1, 2, 3, 4];
let ro: ReadonlyArray<number> = a;
ro[0] = 12; // error!
ro.push(5); // error!
ro.length = 100; // error!
a = ro; // error!

5.4 任意属性

有时候我们希望一个接口中除了包含必选和可选属性之外,还允许有其他的任意属性,这时我们可以使用 索引签名 的形式来满足上述要求。

interface Person {
    name: string;
    age?: number;
    [propName: string]: any;
}

let tom: Person = {
    name: 'Tom',
    gender: 'male'
};

需要注意的是,一旦定义了任意属性,那么确定属性和可选属性的类型都必须是它的类型的子集

interface Person {
    name: string;
    age?: number;
    [propName: string]: string;
}

let tom: Person = {
    name: 'Tom',
    age: 25,
    gender: 'male'
};

// index.ts(3,5): error TS2411: Property 'age' of type 'number' is not assignable to string index type 'string'.
// index.ts(7,5): error TS2322: Type '{ [x: string]: string | number; name: string; age: number; gender: string; }' is not assignable to type 'Person'.
//   Index signatures are incompatible.
//     Type 'string | number' is not assignable to type 'string'.
//       Type 'number' is not assignable to type 'string'.

上例中,任意属性的值允许是 string,但是可选属性 age 的值却是 number,number 不是 string 的子属性,所以报错了。
另外,在报错信息中可以看出,此时 { name: 'Tom', age: 25, gender: 'male' } 的类型被推断成了 { [x: string]: string | number; name: string; age: number; gender: string; },这是联合类型和接口的结合。
一个接口中只能定义一个任意属性。如果接口中有多个类型的属性,则可以在任意属性中使用联合类型:

interface Person {
    name: string;
    age?: number; // 这里真实的类型应该为:number | undefined
    [propName: string]: string | number | undefined;
}

let tom: Person = {
    name: 'Tom',
    age: 25,
    gender: 'male'
};

5.5 鸭式辨型法

所谓的鸭式辨型法就是像鸭子一样走路并且嘎嘎叫的就叫鸭子,即具有鸭子特征的认为它就是鸭子,也就是通过制定规则来判定对象是否实现这个接口。
例子:

interface LabeledValue {
  label: string;
}
function printLabel(labeledObj: LabeledValue) {
  console.log(labeledObj.label);
}
let myObj = { size: 10, label: "Size 10 Object" };
printLabel(myObj); // OK
interface LabeledValue {
  label: string;
}
function printLabel(labeledObj: LabeledValue) {
  console.log(labeledObj.label);
}
printLabel({ size: 10, label: "Size 10 Object" }); // Error

上面代码,在参数里写对象就相当于是直接给labeledObj赋值,这个对象有严格的类型定义,所以不能多参或少参。而当你在外面将该对象用另一个变量myObj接收,myObj不会经过额外属性检查,但会根据类型推论为let myObj: { size: number; label: string } = { size: 10, label: "Size 10 Object" };,然后将这个myObj再赋值给labeledObj,此时根据类型的兼容性,两种类型对象,参照鸭式辨型法,因为都具有label属性,所以被认定为两个相同,故而可以用此法来绕开多余的类型检查。

5.6 绕开额外属性检查的方式

5.6.1 鸭式辩证法

如上例子所示

5.6.2 类型断言

类型断言的意义就等同于你在告诉程序,你很清楚自己在做什么,此时程序自然就不会再进行额外的属性检查了

interface Props { 
  name: string; 
  age: number; 
  money?: number;
}

let p: Props = {
  name: "兔神",
  age: 25,
  money: -100000,
  girl: false
} as Props; // OK

5.6.3 索引签名

interface Props { 
  name: string; 
  age: number; 
  money?: number;
  [key: string]: any;
}

let p: Props = {
  name: "兔神",
  age: 25,
  money: -100000,
  girl: false
}; // OK

6、泛型

6.1 泛型介绍

假如让你实现一个函数 identity,函数的参数可以是任何值,返回值就是将参数原样返回,并且其只能接受一个参数,你会怎么做?

你会觉得这很简单,顺手就写出这样的代码:

const identity = (arg) => arg;

由于其可以接受任意值,也就是说你的函数的入参和返回值都应该可以是任意类型。 现在让我们给代码增加类型声明:

type idBoolean = (arg: boolean) => boolean;
type idNumber = (arg: number) => number;
type idString = (arg: string) => string;
...

一个笨的方法就像上面那样,也就是说 JS 提供多少种类型,就需要复制多少份代码,然后改下类型签名。这对程序员来说是致命的。这种复制粘贴增加了出错的概率,使得代码难以维护,牵一发而动全身。并且将来 JS 新增新的类型,你仍然需要修改代码,也就是说你的代码对修改开放,这样不好。还有一种方式是使用 any 这种“万能语法”。缺点是什么呢?我举个例子:

identity("string").length; // ok
identity("string").toFixed(2); // ok
identity(null).toString(); // ok
...

如果你使用 any 的话,怎么写都是 ok 的, 这就丧失了类型检查的效果。实际上我知道我传给你的是 string,返回来的也一定是 string,而 string 上没有 toFixed 方法,因此需要报错才是我想要的。也就是说我真正想要的效果是:当我用到id的时候,你根据我传给你的类型进行推导。比如我传入的是 string,但是使用了 number 上的方法,你就应该报错。

为了解决上面的这些问题,我们使用泛型对上面的代码进行重构。和我们的定义不同,这里用了一个 类型 T,这个 T 是一个抽象类型,只有在调用的时候才确定它的值,这就不用我们复制粘贴无数份代码了。

function identity<T>(arg: T): T {
  return arg;
}

其中 T 代表 Type,在定义泛型时通常用作第一个类型变量名称。但实际上 T 可以用任何有效名称代替。除了 T 之外,以下是常见泛型变量代表的意思:

  • K(Key):表示对象中的键类型;
  • V(Value):表示对象中的值类型;
  • E(Element):表示元素类型。

在这里插入图片描述
其实并不是只能定义一个类型变量,我们可以引入希望定义的任何数量的类型变量。比如我们引入一个新的类型变量 U,用于扩展我们定义的 identity 函数:

function identity <T, U>(value: T, message: U) : T {
  console.log(message);
  return value;
}
console.log(identity<Number, string>(68, "Semlinker"));

在这里插入图片描述
除了为类型变量显式设定值之外,一种更常见的做法是使编译器自动选择这些类型,从而使代码更简洁。我们可以完全省略尖括号,比如:

function identity <T, U>(value: T, message: U) : T {
  console.log(message);
  return value;
}
console.log(identity(68, "Semlinker"));

对于上述代码,编译器足够聪明,能够知道我们的参数类型,并将它们赋值给 T 和 U,而不需要开发人员显式指定它们。

6.2 泛型约束

假如我想打印出参数的 size 属性呢?如果完全不进行约束 TS 是会报错的:

function trace<T>(arg: T): T {
  console.log(arg.size); // Error: Property 'size doesn't exist on type 'T'
  return arg;
}

报错的原因在于 T 理论上是可以是任何类型的,不同于 any,你不管使用它的什么属性或者方法都会报错(除非这个属性和方法是所有集合共有的)。那么直观的想法是限定传给 trace 函数的参数类型应该有 size 类型,这样就不会报错了。如何去表达这个类型约束的点呢?实现这个需求的关键在于使用类型约束。 使用 extends 关键字可以做到这一点。简单来说就是你定义一个类型,然后让 T 实现这个接口即可。

interface Sizeable {
  size: number;
}
function trace<T extends Sizeable>(arg: T): T {
  console.log(arg.size);
  return arg;
}

6.3 泛型工具类型

为了方便开发者 TypeScript 内置了一些常用的工具类型,比如 Partial、Required、Readonly、Record 和 ReturnType 等。不过在具体介绍之前,我们得先介绍一些相关的基础知识,方便读者可以更好的学习其它的工具类型。

1、typeof

typeof 的主要用途是在类型上下文中获取变量或者属性的类型,下面我们通过一个具体示例来理解一下。

interface Person {
  name: string;
  age: number;
}
const sem: Person = { name: "semlinker", age: 30 };
type Sem = typeof sem; // type Sem = Person

在上面代码中,我们通过 typeof 操作符获取 sem 变量的类型并赋值给 Sem 类型变量,之后我们就可以使用 Sem 类型:

const lolo: Sem = { name: "lolo", age: 5 }

你也可以对嵌套对象执行相同的操作:

const Message = {
    name: "jimmy",
    age: 18,
    address: {
      province: '四川',
      city: '成都'   
    }
}
type message = typeof Message;
/*
 type message = {
    name: string;
    age: number;
    address: {
        province: string;
        city: string;
    };
}
*/

此外,typeof 操作符除了可以获取对象的结构类型之外,它也可以用来获取函数对象的类型,比如:

function toArray(x: number): Array<number> {
  return [x];
}
type Func = typeof toArray; // -> (x: number) => number[]

2、keyof

keyof 操作符是在 TypeScript 2.1 版本引入的,该操作符可以用于获取某种类型的所有键,其返回类型是联合类型。

interface Person {
  name: string;
  age: number;
}

type K1 = keyof Person; // "name" | "age"
type K2 = keyof Person[]; // "length" | "toString" | "pop" | "push" | "concat" | "join" 
type K3 = keyof { [x: string]: Person };  // string | number

3、in

in 用来遍历枚举类型:

type Keys = "a" | "b" | "c"

type Obj =  {
  [p in Keys]: any
} // -> { a: any, b: any, c: any }

4、infer

在条件类型语句中,可以用 infer 声明一个类型变量并且对它进行使用。

type ReturnType<T> = T extends (
  ...args: any[]
) => infer R ? R : any;

以上代码中 infer R 就是声明一个变量来承载传入函数签名的返回值类型,简单说就是用它取到函数返回值的类型方便之后使用。

5、extends

有时候我们定义的泛型不想过于灵活或者说想继承某些类等,可以通过 extends 关键字添加泛型约束。

interface Lengthwise {
  length: number;
}

function loggingIdentity<T extends Lengthwise>(arg: T): T {
  console.log(arg.length);
  return arg;
}

现在这个泛型函数被定义了约束,因此它不再是适用于任意类型:

loggingIdentity(3);  // Error, number doesn't have a .length property

这时我们需要传入符合约束类型的值,必须包含length属性:

loggingIdentity({length: 10, value: 3});

7、tsconfig.json介绍

tsconfig.json 是 TypeScript 项目的配置文件。如果一个目录下存在一个 tsconfig.json 文件,那么往往意味着这个目录就是 TypeScript 项目的根目录。
tsconfig.json 包含 TypeScript 编译的相关配置,通过更改编译配置项,我们可以让 TypeScript 编译出 ES6、ES5、node 的代码。

7.1 tsconfig.json 重要字段

1、files - 设置要编译的文件的名称;
2、include - 设置需要进行编译的文件,支持路径模式匹配;
3、exclude - 设置无需进行编译的文件,支持路径模式匹配;
4、compilerOptions - 设置与编译流程相关的选项。

7.2 compilerOptions 选项

{
  "compilerOptions": {
  
    /* 基本选项 */
    "target": "es5",                       // 指定 ECMAScript 目标版本: 'ES3' (default), 'ES5', 'ES6'/'ES2015', 'ES2016', 'ES2017', or 'ESNEXT'
    "module": "commonjs",                  // 指定使用模块: 'commonjs', 'amd', 'system', 'umd' or 'es2015'
    "lib": [],                             // 指定要包含在编译中的库文件
    "allowJs": true,                       // 允许编译 javascript 文件
    "checkJs": true,                       // 报告 javascript 文件中的错误
    "jsx": "preserve",                     // 指定 jsx 代码的生成: 'preserve', 'react-native', or 'react'
    "declaration": true,                   // 生成相应的 '.d.ts' 文件
    "sourceMap": true,                     // 生成相应的 '.map' 文件
    "outFile": "./",                       // 将输出文件合并为一个文件
    "outDir": "./",                        // 指定输出目录
    "rootDir": "./",                       // 用来控制输出目录结构 --outDir.
    "removeComments": true,                // 删除编译后的所有的注释
    "noEmit": true,                        // 不生成输出文件
    "importHelpers": true,                 // 从 tslib 导入辅助工具函数
    "isolatedModules": true,               // 将每个文件做为单独的模块 (与 'ts.transpileModule' 类似).

    /* 严格的类型检查选项 */
    "strict": true,                        // 启用所有严格类型检查选项
    "noImplicitAny": true,                 // 在表达式和声明上有隐含的 any类型时报错
    "strictNullChecks": true,              // 启用严格的 null 检查
    "noImplicitThis": true,                // 当 this 表达式值为 any 类型的时候,生成一个错误
    "alwaysStrict": true,                  // 以严格模式检查每个模块,并在每个文件里加入 'use strict'

    /* 额外的检查 */
    "noUnusedLocals": true,                // 有未使用的变量时,抛出错误
    "noUnusedParameters": true,            // 有未使用的参数时,抛出错误
    "noImplicitReturns": true,             // 并不是所有函数里的代码都有返回值时,抛出错误
    "noFallthroughCasesInSwitch": true,    // 报告 switch 语句的 fallthrough 错误。(即,不允许 switch 的 case 语句贯穿)

    /* 模块解析选项 */
    "moduleResolution": "node",            // 选择模块解析策略: 'node' (Node.js) or 'classic' (TypeScript pre-1.6)
    "baseUrl": "./",                       // 用于解析非相对模块名称的基目录
    "paths": {},                           // 模块名到基于 baseUrl 的路径映射的列表
    "rootDirs": [],                        // 根文件夹列表,其组合内容表示项目运行时的结构内容
    "typeRoots": [],                       // 包含类型声明的文件列表
    "types": [],                           // 需要包含的类型声明文件名列表
    "allowSyntheticDefaultImports": true,  // 允许从没有设置默认导出的模块中默认导入。

    /* Source Map Options */
    "sourceRoot": "./",                    // 指定调试器应该找到 TypeScript 文件而不是源文件的位置
    "mapRoot": "./",                       // 指定调试器应该找到映射文件而不是生成文件的位置
    "inlineSourceMap": true,               // 生成单个 soucemaps 文件,而不是将 sourcemaps 生成不同的文件
    "inlineSources": true,                 // 将代码与 sourcemaps 生成到一个文件中,要求同时设置了 --inlineSourceMap 或 --sourceMap 属性

    /* 其他选项 */
    "experimentalDecorators": true,        // 启用装饰器
    "emitDecoratorMetadata": true          // 为装饰器提供元数据的支持
  }
}

7.3 编写高效 TS 代码的一些建议

7.3.1 尽量减少重复代码

对于刚接触 TypeScript 的小伙伴来说,在定义接口时,可能一不小心会出现以下类似的重复代码。比如:

interface Person {
  firstName: string;
  lastName: string;
}

interface PersonWithBirthDate {
  firstName: string;
  lastName: string;
  birth: Date;
}

很明显,相对于 Person 接口来说,PersonWithBirthDate 接口只是多了一个 birth 属性,其他的属性跟 Person 接口是一样的。那么如何避免出现例子中的重复代码呢?要解决这个问题,可以利用 extends 关键字:

interface Person { 
  firstName: string; 
  lastName: string;
}

interface PersonWithBirthDate extends Person { 
  birth: Date;
}

当然除了使用 extends 关键字之外,也可以使用交叉运算符(&)

type PersonWithBirthDate = Person & { birth: Date };

另外,有时候你可能还会发现自己想要定义一个类型来匹配一个初始配置对象的「形状」,比如:

const INIT_OPTIONS = {
  width: 640,
  height: 480,
  color: "#00FF00",
  label: "VGA",
};

interface Options {
  width: number;
  height: number;
  color: string;
  label: string;
}

其实,对于 Options 接口来说,你也可以使用 typeof 操作符来快速获取配置对象的「形状」:

type Options = typeof INIT_OPTIONS;

在实际的开发过程中,重复的类型并不总是那么容易被发现。有时它们会被语法所掩盖。比如有多个函数拥有相同的类型签名:

function get(url: string, opts: Options): Promise<Response> { /* ... */ } 
function post(url: string, opts: Options): Promise<Response> { /* ... */ }

对于上面的 get 和 post 方法,为了避免重复的代码,你可以提取统一的类型签名:

type HTTPFunction = (url: string, opts: Options) => Promise<Response>; 
const get: HTTPFunction = (url, opts) => { /* ... */ };
const post: HTTPFunction = (url, opts) => { /* ... */ };

7.3.2 使用更精确的类型替代字符串类型

假设你正在构建一个音乐集,并希望为专辑定义一个类型。这时你可以使用 interface 关键字来定义一个 Album 类型:

interface Album {
  artist: string; // 艺术家
  title: string; // 专辑标题
  releaseDate: string; // 发行日期:YYYY-MM-DD
  recordingType: string; // 录制类型:"live" 或 "studio"
}

对于 Album 类型,你希望 releaseDate 属性值的格式为 YYYY-MM-DD,而 recordingType 属性值的范围为 live 或 studio。但因为接口中 releaseDaterecordingType 属性的类型都是字符串,所以在使用 Album 接口时,可能会出现以下问题:

const dangerous: Album = {
  artist: "Michael Jackson",
  title: "Dangerous",
  releaseDate: "November 31, 1991", // 与预期格式不匹配
  recordingType: "Studio", // 与预期格式不匹配
};

虽然 releaseDaterecordingType 的值与预期的格式不匹配,但此时 TypeScript 编译器并不能发现该问题。为了解决这个问题,你应该为 releaseDaterecordingType 属性定义更精确的类型,比如这样:

interface Album {\
  artist: string; // 艺术家
  title: string; // 专辑标题
  releaseDate: Date; // 发行日期:YYYY-MM-DD
  recordingType: "studio" | "live"; // 录制类型:"live" 或 "studio"
}

重新定义 Album 接口之后,对于前面的赋值语句,TypeScript 编译器就会提示以下异常信息:

const dangerous: Album = {
  artist: "Michael Jackson",
  title: "Dangerous",
  // 不能将类型“string”分配给类型“Date”。ts(2322)
  releaseDate: "November 31, 1991", // Error
  // 不能将类型“"Studio"”分配给类型“"studio" | "live"”。ts(2322)\
  recordingType: "Studio", // Error
};

为了解决上面的问题,你需要为 releaseDate 和 recordingType 属性设置正确的类型,比如这样:

const dangerous: Album = {
  artist: "Michael Jackson",
  title: "Dangerous",
  releaseDate: new Date("1991-11-31"),
  recordingType: "studio",
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/529743.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构-排序-(选择、堆排序、归并排序、基数排序)

目录 一、选择排序 二、堆排序 排序 效率分析 三、归并排序 排序 分析 四、基数排序 一、选择排序 思想&#xff1a;每趟在待排序元素中选取关键字最小的元素加入有序子列 不稳定性 空间复杂度&#xff1a;O(1) 时间复杂度&#xff1a; void swap(int &a,int &…

[Linux] 动态 / 静态库的生成与使用

文章目录 简要概念 静态库生成使用 动态库生成使用 简要概念 库一般分为两种&#xff1a; 静态库动态库 在 Linux 中&#xff1a; 如果是动态库&#xff0c;库文件是以 .so 作后缀的如果是静态库&#xff0c;库文件是以 .a 作后缀的 库文件的命名&#xff1a; libXXX.so …

RBTree

目录 红黑树的概念 红黑树性质 红黑树节点设计 红黑树的插入 红黑树的验证 红黑树和AVL树的比较 红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或 Black。 通过对任何一条从根到叶子的…

Point-SLAM: Dense Neural Point Cloud-based SLAM阅读记录

前言 只读了前半部分就感慨文章结构真的好清晰&#xff0c;从Introduction到related work完完全全都在体现它的motivation——他做了一件什么事情&#xff1f;以及为什么要这么做&#xff1f;解决了什么问题。 第一遍阅读 keywords: 以RGBD作为输入 使用点云表示场景的 dens…

【P21】JMeter XPath2 提取器(XPath2 Extractor)

文章目录 一、准备工作二、测试计划 一、准备工作 百度&#xff1a;https://www.w3school.com.cn/example/xmle/cd_catalog.xml 进入网页后&#xff0c;右键检查或按F12&#xff0c;打开调试工具 如图&#xff0c;使用XPath2 提取器&#xff08;XPath2 Extractor&#xff09;…

python 使用pandas或xlrd、xlwt实现对Excel的读取、添加、追加等一系列封装

不说了&#xff0c;又是造轮子的一天。在此我要严重批评CSDN或百度一堆浑水摸鱼的&#xff0c;某些人明明代码明显报错也来上传发博客&#xff0c;要么就是标题党&#xff0c;代码没报错但压根就不是实现那个功能的&#xff0c;简直是浪费时间。 废话不多说直接贴代码&#xff…

Linux—网络基础

目录 计算机网络背景 网络发展 认识 "协议" 网络协议初识 协议分层 OSI七层模型 TCP/IP五层(或四层)模型 网络传输基本流程 协议报头 局域网通信 网络传输流程图 局域网通信图 跨网络通信图 数据包封装和分用 网络中的地址管理 认识IP地址 认识MAC地址…

8款主流产品原型设计软件分享

在产品设计中&#xff0c;你知道如何选择合适的产品设计软件吗&#xff1f;每个产品设计软件的功能实际上是不同的&#xff0c;不同的产品设计软件应用领域是不同的。 只有深入了解每个产品设计软件的功能和主要适合该软件的行业&#xff0c;我们才能在设计相应的产品时找到合…

linux内核篇-进程及其调度

介绍一个程序从源文件到进程执行的过程 1、编译链接&#xff08;源文件到二进制文件&#xff09; Linux 下面二进制的程序也要有严格的格式&#xff0c;称为ELF&#xff08;Executeable and Linkable Format&#xff0c;可执行与可链接格式&#xff09; &#xff0c;这个格式可…

Simulink 和 Gazebo联合仿真控制机械臂【Matlab R2022a】

逛 B 站&#xff0c;偶然发现一个 up 主上传的视频&#xff0c;可以实现 Simulink 中搭建机器人的控制器设计&#xff0c;对运行在虚拟机中 Gazebo 中的机械臂进行控制&#xff0c;链接&#xff1a;三关节机械臂Gazebo-Simulink联合仿真&#xff0c;这让我很感兴趣&#xff0c;…

Web基础 ( 一 ) HTML

1.HTML <input /><input typebutton value按钮 />1.1.概念 1.1.1.HTML文件是什么 HTML表示超文本标记语言&#xff08;Hyper Text Markup Language&#xff09;, HTML文件是一个包含标记的文本文件, 必须有htm标记或者html扩展名。 可以通过浏览器(Browser)直接…

如何用自己公司的知识、流程等来训练Chat GPT?

在玩过 ChatGPT 并向它询问有关世界、金融和初创公司的一般问题后&#xff0c;我开始思考&#xff1a;“如果我可以用我自己的初创公司甚至大型公司的所有流程、知识和商业经验来训练 AI 模型会怎样&#xff1f;企业&#xff1f;” 使用您自己公司的知识、流程等培训 ChatGPT …

华为OD机试 - 计算网络信号、信号强度( Python)

题目描述 网络信号经过传递会逐层衰减,且遇到阻隔物无法直接穿透,在此情况下需要计算某个位置的网络信号值。 注意:网络信号可以绕过阻隔物。 array[m][n] 的二维数组代表网格地图, array[i][j] = 0代表i行j列是空旷位置; array[i][j] = x(x为正整数)代表i行j列是信号源,…

Python实现哈里斯鹰优化算法(HHO)优化XGBoost回归模型(XGBRegressor算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 2019年Heidari等人提出哈里斯鹰优化算法(Harris Hawk Optimization, HHO)&#xff0c;该算法有较强的全…

【A*算法——清晰解析 算法逻辑——算法可以应用到哪些题目】例题1.第K短路

A*算法 A*算法是什么例题1. 第K短路题意解析 欢迎观看我的博客&#xff0c;如有问题交流&#xff0c;欢迎评论区留言&#xff0c;一定尽快回复&#xff01;&#xff08;大家可以去看我的专栏&#xff0c;是所有文章的目录&#xff09;   文章字体风格&#xff1a; 红色文字表示…

栈和队列的实现

栈 栈的概念 栈也是线性表的一种&#xff0c;但是栈只允许在固定的一端进行插入与删除数据&#xff0c;而进行插入与删除的一端同意称为栈顶&#xff0c;而另一端就称为栈底。简称&#xff1a;后进先出。 压栈&#xff08;push&#xff09;&#xff1a;将数据插入栈顶。 出…

C++进阶——AVL树的构建

C进阶——AVL树的构建 AVL树 概念 二叉搜索树虽可以缩短查找的效率&#xff0c;但如果数据有序或接近有序二叉搜索树将退化为单支树&#xff0c;查找元素相当 于在顺序表中搜索元素&#xff0c;效率低下。因此&#xff0c;两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landi…

2023Python最火的第三方开源测试框架 ——pytest

一、介绍 本篇文章是介绍的是Python 世界中最火的第三方单元测试框架&#xff1a;pytest。 它有如下主要特性&#xff1a; assert 断言失败时输出详细信息&#xff08;再也不用去记忆 self.assert* 名称了&#xff09;自动发现测试模块和函数模块化夹具用以管理各类测试资源对…

顺序表,让数据有序飞舞:C语言实现全攻略

本篇博客会讲解顺序表这种数据结构的相关知识&#xff0c;并且使用C语言实现一个顺序表。 概述 什么是顺序表呢&#xff1f;顺序表是一种线性的数据结构&#xff0c;其特点是&#xff1a;数据是从第一个位置开始&#xff0c;连续存放的。其实&#xff0c;你完全可以把它等价于…

哈工大软件过程与工具作业3

哈尔滨工业大学 计算学部/软件学院 2022年秋季学期 2020级本科《软件过程与工具》课程&#xff08;3.0学分&#xff09; 作业报告 作业3&#xff1a;软件测试报告 姓名 学号 联系方式 石卓凡 120L021011 944613709qq.com/18974330318 目 录 1 作业目的与要求...........…