本文介绍MySQL索引的结构、语法、使用规则等
文章目录
- 索引介绍
- 索引结构
- 二叉树
- B-Tree
- B+Tree
- Hash
- 索引分类
- 思考题
- 语法
- SQL性能分析
- SQL的执行频率
- 慢查询日志
- PROFILE详情
- EXPLAIN执行计划
- 索引使用规则
- 最左前缀法则
- 索引失效情况
- 索引列运算
- 字符串不加引号
- 模糊查询
- or连接的条件
- 数据分布影响
- SQL 提示
- 覆盖索引&回表查询
- 前缀索引
- 单列索引&联合索引
- 设计原则
索引介绍
索引是帮助 MySQL 高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查询算法,这种数据结构就是索引。
优缺点比较:
索引结构
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:
二叉树
二叉树缺点:
顺序插入时,会退化成单向链表,性能大大降低。数据量较大的情况下,二叉树的层级较深,检索数据速度慢。
二叉数的缺点可以用红黑树弥补,但是红黑树也存在大数据量情况下,层级较深,检索速度慢的问题。
B-Tree
B-Tree (多路平衡查找树) 以一棵最大度数(max-degree,指一个节点的子节点个数)为5(5阶)的 b-tree 为例
- 每个节点最多存储4个key,5个指针)。
- 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
- 在B-Tree中,非叶子节点和叶子节点都会存放数据。
B+Tree
B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例:
与 B-Tree 的区别:
- 所有的数据都会出现在叶子节点
- 叶子节点形成一个单向链表
MySQL 索引数据结构对经典的 B+Tree 进行了优化。在原 B+Tree 的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的 B+Tree,提高区间访问的性能。
Hash
哈希索引就是采用一定的Hash算法,将键值换算成新的Hash值,映射到对应的槽位上,然后存储在Hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
特点:
- Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,…)
- 无法利用索引完成排序操作
- 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+Tree索引
在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。
索引分类
在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:
如图:
聚集索引的叶子节点下挂的是这一行的数据。
二级索引的叶子节点下挂的是该字段值对应的主键值。
由于是根据name字段进行查询,所以先根据name='Arm’到name字段的二级索引中进行匹配查找。但是在二级索引中只能查找到 Arm 对应的主键值 10。
由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最终找到10对应的行row。
最终拿到这一行的数据,直接返回即可。
回表查询:这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方法,就称之为回表查询。
聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引
- 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引
- 如果表没有主键或没有合适的唯一索引,则 InnoDB 会自动生成一个 rowid 作为隐藏的聚集索引
思考题
- 以下 SQL 语句,哪个执行效率高?为什么?
select * from user where id = 10;
select * from user where name = 'Arm';
-- 备注:id为主键,name字段创建的有索引
答:第一条语句,因为第二条需要回表查询,相当于两个步骤。
- InnoDB 主键索引的 B+Tree 高度为多少?
答:假设一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB 的指针占用6个字节的空间,主键假设为bigint,占用字节数为8.
可得公式:n * 8 + (n + 1) * 6 = 16 * 1024
,其中 8 表示 bigint 占用的字节数,n 表示当前节点存储的key的数量,(n + 1) 表示指针数量(比key多一个)。算出n约为1170。
如果树的高度为2,那么他能存储的数据量大概为:1171 * 16 = 18736;
如果树的高度为3,那么他能存储的数据量大概为:1171 * 1171 * 16 = 21939856。
另外,如果有成千上万的数据,那么就要考虑分表,涉及运维篇知识。
语法
创建索引:
CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (index_col_name, ...);
如果不加 CREATE 后面不加索引类型参数,则创建的是常规索引
查看索引:
SHOW INDEX FROM table_name;
删除索引:
DROP INDEX index_name ON table_name;
#name字段为姓名字段,该字段的值可能会重复,为name字段创建索引
CREATE INDEX idx_user_name ON tb_user(name);
#phone手机号字段的值时非空且唯一的,为phone字段创建索引
CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);
#为profession、age、status创建联合索引
CREATE INDEX idx_user_pro_age_status ON tb_user(profession,age,status);
#为email创建合适的索引来提升查询效率
CREATE INDEX idx_user_email ON tb_user(email);
#删除idx_user_email索引
DROP INDEX idx_user_email ON tb_user;
SQL性能分析
SQL的执行频率
MySQL 客户端连接成功后,通过show [session|global] status命令可以提供服务器状态信 息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:
#session 是查看当前会话 ;
#global 是查询全局数据 ;
SHOW GLOBAL STATUS LIKE 'Com_______';
通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据 库优化提供参考依据。如果是以增删改为主,我们可以考虑不对其进行索引的优化。如果是以 查询为主,那么就要考虑对数据库的索引进行优化了。
慢查询日志
慢查询日志记录了所有执行时间超过指定参数·long_query_time,单位:秒,默认10秒
)的所有 SQL语句的日志。
MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量slow_query_log
。
如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)
中进行配置。
#开启慢日志
slow_query_log=1
#设置阈值为1秒
long_query_time=1
配置完毕后,通过指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息
#重启MySQL服务器
systemctl restart mysqld
#查看慢日志
cat /var/lib/mysql/localhost-slow.log
PROFILE详情
show profiles能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling 参数,能够看到当前MySQL是否支持profile操作:
SELECT @@have_profiling;
#查看每一条SQL的耗时基本情况
SHOW PROFILES;
#查看指定query_id的SQL语句各个阶段的耗时
SHOW PROFILE FOR QUERY query_id;
#查看指定query_id的SQL语句CPU的使用情况
SHOW PROFILE CPU FOR QUERY query_id;
EXPLAIN执行计划
EXPLAIN或者DESC命令获取MySQL如何执行SELECT语句的信息,包括在SELECT语句执行过程中表如何连接和连接的顺序。
#直接在select语句之前加上关键字 explain / desc
EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;
索引使用规则
最左前缀法则
如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始, 并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
联合索引中,出现范围查询(<, >),范围查询右侧的列索引失效。可以用>=或者<=来规避索引失效问题。
索引失效情况
索引列运算
不要在索引列上进行运算操作,索引将失效。
EXPLAIN SELECT * FROM tb_user WHERE SUBSTRING(phone,10,2) = '15'
字符串不加引号
字符串类型字段使用时,不加引号,索引将失效。
explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
explain select * from tb_user where profession = '软件工程' and age = 31 and status = 0;
explain select * from tb_user where phone = '17799990015';
explain select * from tb_user where phone = 17799990015;
模糊查询
如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引将失效。
explain select * from tb_user where profession like '软件%';#生效
explain select * from tb_user where profession like '%工程';#失效
explain select * from tb_user where profession like '%工%';#失效
or连接的条件
用or分割开的条件,如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。
explain select * from tb_user where id = 10 or age = 23;
explain select * from tb_user where phone = '17799990017' or age = 23;
由于age没有索引,所以即使id、phone有索引,索引也会失效。所以需要针对于age也要建立索引。
数据分布影响
select * from tb_user where phone >= '17799990005';
select * from tb_user where phone >= '17799990015';
因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃 索引,走全表扫描。因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。
SQL 提示
是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
例如,使用索引:
explain select * from tb_user use index(idx_user_pro) where profession="软件工程";
不使用哪个索引:
explain select * from tb_user ignore index(idx_user_pro) where profession="软件工程";
必须使用哪个索引:
explain select * from tb_user force index(idx_user_pro) where profession="软件工程";
use 是建议,实际使用哪个索引 MySQL 还会自己权衡运行速度去更改,force就是无论如何都强制使用该索引。
覆盖索引&回表查询
尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能找到),减少 select *。
explain 中 extra 字段含义:
using index condition
:查找使用了索引,但是需要回表查询数据
using where; using index;
:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询
- 如果在聚集索引中直接能找到对应的行,则直接返回行数据,只需要一次查询,哪怕是select *;
- 如果在辅助索引中找聚集索引,如
select id, name from xxx where name='xxx';,
也只需要通过辅助索引(name)查找到对应的id,返回name和name索引对应的id即可,只需要一次查询; - 如果是通过辅助索引查找其他字段,则需要回表查询,如
select id, name, gender from xxx where name='xxx';
所以尽量不要用select *,容易出现回表查询,降低效率,除非有联合索引包含了所有字段
面试题:一张表,有四个字段(id, username, password, status),由于数据量大,需要对以下SQL语句进行优化,该如何进行才是最优方案:
select id, username, password from tb_user where username='itcast';
解:给username和password字段建立联合索引,则不需要回表查询,直接覆盖索引
前缀索引
当字段类型为字符串(varchar, text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率,此时可以只降字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
语法:create index idx_xxxx on table_name(columnn(n));
前缀长度:可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
求选择性公式:
select count(distinct email) / count(*) from tb_user;
select count(distinct substring(email, 1, 5)) / count(*) from tb_user;
show index 里面的sub_part可以看到接取的长度
单列索引&联合索引
单列索引:即一个索引只包含单个列
联合索引:即一个索引包含了多个列
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。
单列索引情况:
explain select id, phone, name from tb_user where phone = '17799990010' and name = '韩信';
这句只会用到phone索引字段
注意事项
- 多条件联合查询时,MySQL优化器会评估哪个字段的索引效率更高,会选择该索引完成本次查询
设计原则
- 针对于数据量较大,且查询较为频繁的表建立索引。
- 针对于常作为查询条件(WHERE)、排序(ORDER BY)、分组(GROUP BY)操作的字段建立索引。
- 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
- 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
- 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
- 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
- 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。