正则化解决过拟合

news2025/1/20 16:20:55

本片举三个例子进行对比,分别是:不使用正则化、使用L2正则化、使用dropout正则化。

首先是前后向传播、加载数据、画图所需要的相关函数的reg_utils.py:

# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio

def sigmoid(x):
    """
    Compute the sigmoid of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- sigmoid(x)
    """
    s = 1/(1+np.exp(-x))
    return s
 
def relu(x):
    """
    Compute the relu of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- relu(x)
    """
    s = np.maximum(0,x)
    
    return s

def initialize_parameters(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    b1 -- bias vector of shape (layer_dims[l], 1)
                    Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
                    bl -- bias vector of shape (1, layer_dims[l])
                    
    Tips:
    - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. 
    This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
    - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
    """
    
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims) # number of layers in the network
 
    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1])
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
        
        assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
        assert(parameters['W' + str(l)].shape == layer_dims[l], 1)
 
        
    return parameters

def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()
    
    Returns:
    loss -- the loss function (vanilla logistic loss)
    """
    
    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    z1 = np.dot(W1, X) + b1
    a1 = relu(z1)
    z2 = np.dot(W2, a1) + b2
    a2 = relu(z2)
    z3 = np.dot(W3, a2) + b3
    a3 = sigmoid(z3)
    
    cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)
    
    return a3, cache
 
def compute_cost(a3, Y):
    """
    Implement the cost function
    
    Arguments:
    a3 -- post-activation, output of forward propagation
    Y -- "true" labels vector, same shape as a3
    
    Returns:
    cost - value of the cost function
    """
    m = Y.shape[1]
    
    logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    cost = 1./m * np.nansum(logprobs)
    
    return cost

def backward_propagation(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    cache -- cache output from forward_propagation()
    
    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    m = X.shape[1]
    (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache
    
    dz3 = 1./m * (a3 - Y)
    dW3 = np.dot(dz3, a2.T)
    db3 = np.sum(dz3, axis=1, keepdims = True)
    
    da2 = np.dot(W3.T, dz3)
    dz2 = np.multiply(da2, np.int64(a2 > 0))
    dW2 = np.dot(dz2, a1.T)
    db2 = np.sum(dz2, axis=1, keepdims = True)
    
    da1 = np.dot(W2.T, dz2)
    dz1 = np.multiply(da1, np.int64(a1 > 0))
    dW1 = np.dot(dz1, X.T)
    db1 = np.sum(dz1, axis=1, keepdims = True)
    
    gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,
                 "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
                 "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}
    
    return gradients

def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients, output of n_model_backward
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
                  parameters['W' + str(i)] = ... 
                  parameters['b' + str(i)] = ...
    """
    
    L = len(parameters) // 2 # number of layers in the neural networks
 
    # Update rule for each parameter
    for k in range(L):
        parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)]
        parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)]
        
    return parameters

def load_2D_dataset(is_plot=True):
    data = sio.loadmat('datasets/data.mat')
    train_X = data['X'].T
    train_Y = data['y'].T
    test_X = data['Xval'].T
    test_Y = data['yval'].T
    if is_plot:
        plt.scatter(train_X[0, :], train_X[1, :], c=train_Y, s=40, cmap=plt.cm.Spectral)
        plt.show()
    
    return train_X, train_Y, test_X, test_Y

def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.
    
    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model
    
    Returns:
    p -- predictions for the given dataset X
    """
    
    m = X.shape[1]
    p = np.zeros((1,m), dtype = np.int)
    
    # Forward propagation
    a3, caches = forward_propagation(X, parameters)
    
    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0
 
    # print results
    print("Accuracy: "  + str(np.mean((p[0,:] == y[0,:]))))
    
    return p

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
    plt.show()
 
def predict_dec(parameters, X):
    """
    Used for plotting decision boundary.
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    X -- input data of size (m, K)
    
    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """
    
    # Predict using forward propagation and a classification threshold of 0.5
    a3, cache = forward_propagation(X, parameters)
    predictions = (a3>0.5)
    return predictions

可以先画出数据看是什么样:

train_X, train_Y, test_X, test_Y = reg_utils.load_2D_dataset(is_plot=True)

在这里插入图片描述
然后开始测试代码:

不使用正则化

首先我们不使用正则化,让lambd参数(删了个a不与python关键字重合)和keep_prob为默认值0和1,表示不使用这两个正则化。

import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import reg_utils  


plt.rcParams['figure.figsize'] = (7.0, 4.0)  # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# 加载数据集
train_X, train_Y, test_X, test_Y = reg_utils.load_2D_dataset(is_plot=False)

def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0, keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数
        keep_prob - 随机删除节点的概率
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        ## 是否随机删除节点
        if keep_prob == 1:
            ### 不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ### 随机删除节点
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        # 计算成本
        ## 是否使用二范数
        if lambd == 0:
            ### 不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ### 使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        ## 可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert (lambd == 0 or keep_prob == 1)

        ## 两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习后的参数
    return parameters

# 进行模型学习,得到最终的参数
parameters = model(train_X, train_Y, is_plot=True)
print("训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)

运行后结果如下:

0次迭代,成本值为:0.655741252348100210000次迭代,成本值为:0.1632998752572421320000次迭代,成本值为:0.13851642423265018
训练集:
Accuracy: 0.9478672985781991
测试集:
Accuracy: 0.915

在这里插入图片描述
这样的结果看起来还算正常(因为数据集的问题,过拟合的特征还看不太出来不是很明显),接下来绘制决策边界分割曲线会看得比较明显:

plt.title("Model without regularization")
axes = plt.gca()
axes.set_xlim([-0.75, 0.40])
axes.set_ylim([-0.75, 0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

运行结果如下:
在这里插入图片描述
可以很明显的看到过拟合了,钻牛角尖过分学习那几个局部特征了。
接下来试验一下引入正则化的效果。

使用L2正则化

L2正则化公式如下(L2正则化主要体现在loss的公式上面):
在这里插入图片描述
L2正则化成本其实就是每一层的权重的平方和,用代码np.sum(np.square(Wl))来计算。
d W [ l ] = ( f r o m b a c k p r o p ) + λ m W [ l ] , f r o m b a c k p r o p 就是 d W [ l ] dW^{[l]} =(frombackprop)+ \frac{\lambda}{m}W ^{[l]}, frombackprop就是dW^{[l]} dW[l]=(frombackprop)+mλW[l]frombackprop就是dW[l]

更新参数时, W [ l ] = W [ l ] − α d W [ l ] 更新参数时, W^{[l]} =W^{[l]} - \alpha dW ^{[l]} 更新参数时,W[l]=W[l]αdW[l]
最终合并同类项为: W [ l ] = ( 1 − λ m ) W [ l ] − α d W [ l ] 最终合并同类项为:W^{[l]}=(1-\frac{\lambda}{m} )W^{[l]}-\alpha dW^{[l]} 最终合并同类项为:W[l]=(1mλ)W[l]αdW[l]
通过更新参数的公式可以看到,L2正则化是通过加入正则化参数 λ {\lambda} λ 使得网络的权重变小(重量衰减),从而削弱众多神经元的影响来解决过拟合问题。
加入如下代码,计算L2正则化的loss和反向的梯度:

def compute_cost_with_regularization(A3, Y, parameters, lambd):
    """
    实现公式2的L2正则化计算成本

    参数:
        A3 - 正向传播的输出结果,维度为(输出节点数量,训练/测试的数量)
        Y - 标签向量,与数据一一对应,维度为(输出节点数量,训练/测试的数量)
        parameters - 包含模型学习后的参数的字典
    返回:
        cost - 使用公式2计算出来的正则化损失的值

    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]

    # 无正则化loss
    cross_entropy_cost = reg_utils.compute_cost(A3, Y)

    # L2正则化loss,lambd*每层权重的平方和的和/(2*m)
    L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) / (2 * m)

    cost = cross_entropy_cost + L2_regularization_cost

    return cost

# 当然,因为改变了成本函数,我们也必须改变向后传播的函数, 所有的梯度都必须根据这个新的成本值来计算。
def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    实现我们添加了L2正则化的模型的后向传播。

    参数:
        X - 输入数据集,维度为(输入节点数量,数据集里面的数量)
        Y - 标签,维度为(输出节点数量,数据集里面的数量)
        cache - 来自forward_propagation()的cache输出
        lambda - regularization超参数,实数

    返回:
        gradients - 一个包含了每个参数、激活值和预激活值变量的梯度的字典
    """

    m = X.shape[1]

    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y

    dW3 = (1 / m) * np.dot(dZ3, A2.T) + ((lambd * W3) / m)    # 前一项为frombackprop,即原来的dW3
    db3 = (1 / m) * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = (1 / m) * np.dot(dZ2, A1.T) + ((lambd * W2) / m)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = (1 / m) * np.dot(dZ1, X.T) + ((lambd * W1) / m)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

调用model函数时加入lambd参数:

parameters = model(train_X, train_Y, lambd=0.7,is_plot=True)

运行代码结果如下:

0次迭代,成本值为:0.697448449313126410000次迭代,成本值为:0.268491887328223920000次迭代,成本值为:0.2680916337127301
训练集:
Accuracy: 0.9383886255924171
测试集:
Accuracy: 0.93

loss走势曲线:
在这里插入图片描述
绘制决策边界:
这里的标题可以改一下:

plt.title("Model with L2-regularization")

在这里插入图片描述
可以看到训练集和测试集上的准确率几乎没有差距,或者说比无正则化的差距要小,从绘制边界可以看到没有过拟合的特征。
L2正则化会使决策边界更加平滑。但要注意,如果λ太大,也可能会“过度平滑”,从而导致模型高偏差,从而变成欠拟合的状态。

使用dropout正则化

原理是在某层当中设置保留某个神经元的概率keep-prob,在这层中随机失活1 - keep-prob概率的节点。则这层当中失活的节点在本轮迭代中的正向传播反向传播均不参与,即失活的节点的参数在本轮训练中不作更新,没失火的节点的参数进行更新。
假设在第3层进行随机失活,在正向传播时需要进行以下三步(假设在第三层的失活):

  1. d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep-prob 。这句话的意思是创建一个跟a3相同shape的随机矩阵,每个值与keep-prob进行对比,小于keep-prob的为True(python计算时自动变为1),大于keep-prob即不符合的为False即0。
  2. a3 = np.multiply(a3, d3) 。通过和d3相乘,来失活1 - keep-prob的节点不参与计算(与0相乘为0)。
  3. a3 /= keep-prob 。通过缩放就在计算成本的时候仍然大致具有相同的期望值,这叫做反向dropout。
    在反向传播时需要进行以下两步(假设在第三层的失活):
  4. dA3 = dA3 * D3 。舍弃正向传播中舍弃的节点,不进行计算梯度即不进行更新。
  5. dA2 /= keep_prob 。进行缩放,保持大致期望。
    加入以下代码进行dropout的正反向传播:
def forward_propagation_with_dropout(X, parameters, keep_prob=0.5):
    """
    实现具有随机舍弃节点的前向传播。
    LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.

    参数:
        X  - 输入数据集,维度为(2,示例数)
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(20,2)
            b1  - 偏向量,维度为(20,1)
            W2  - 权重矩阵,维度为(3,20)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)
        keep_prob  - 随机删除的概率,实数
    返回:
        A3  - 最后的激活值,维度为(1,1),正向传播的输出
        cache - 存储了一些用于计算反向传播的数值的元组
    """
    np.random.seed(1)

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = reg_utils.relu(Z1)

    D1 = np.random.rand(A1.shape[0], A1.shape[1])
    D1 = D1 < keep_prob  # 步骤1
    A1 = A1 * D1  # 步骤2
    A1 = A1 / keep_prob  # 步骤3

    Z2 = np.dot(W2, A1) + b2
    A2 = reg_utils.relu(Z2)
    
    D2 = np.random.rand(A2.shape[0], A2.shape[1])
    D2 = D2 < keep_prob  # 步骤1
    A2 = A2 * D2  # 步骤2
    A2 = A2 / keep_prob  # 步骤3

    Z3 = np.dot(W3, A2) + b3
    A3 = reg_utils.sigmoid(Z3)

    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)

    return A3, cache

def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    """
    实现我们随机删除的模型的后向传播。
    参数:
        X  - 输入数据集,维度为(2,示例数)
        Y  - 标签,维度为(输出节点数量,示例数量)
        cache - 来自forward_propagation_with_dropout()的cache输出
        keep_prob  - 随机删除的概率,实数

    返回:
        gradients - 一个关于每个参数、激活值和预激活变量的梯度值的字典
    """
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = (1 / m) * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
    dA2 = np.dot(W3.T, dZ3)

    dA2 = dA2 * D2  # 步骤1
    dA2 = dA2 / keep_prob  # 步骤2

    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)

    dA1 = dA1 * D1  # 步骤1
    dA1 = dA1 / keep_prob  # 步骤2

    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

调用model函数时加入keep_prob参数,设为0.86,即在每次迭代中第1层和第2层的14%的节点将不参与计算:

parameters = model(train_X, train_Y, keep_prob=0.86, learning_rate=0.3,is_plot=True)

运行代码结果如下:

10000次迭代,成本值为:0.06101698657490560520000次迭代,成本值为:0.060582435798513114
训练集:
Accuracy: 0.9289099526066351
测试集:
Accuracy: 0.95

在这里插入图片描述
这里的标题可以改一下:

plt.title("Model with dropout")

在这里插入图片描述
可以看到使用dropout让训练集的准确率稍微降低了些,但测试集上的准确率提升了,提高了泛化能力,还是很成功的。

dropout防止过拟合的原因:每个神经元都不依赖于任何特征,因为任意一个特征都有可能被清除。
注意,测试阶段不使用dropout,因为要保证测试结果的稳定。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/522884.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

双层优化入门(2)—基于yalmip的双层优化求解(附matlab代码)

上一篇博客介绍了双层优化的基本原理和使用KKT条件求解双层优化的方法&#xff1a; 双层优化入门(1)—基本原理与求解方法 这篇博客将介绍使用yalmip的双层优化问题的求解方法。 1.KKT函数 通过调用yalmip工具箱中的KKT函数&#xff0c;可以直接求出优化问题的KKT条件&#x…

算法(一)—— 回溯(2)

文章目录 1 131 分割回文串2 93 复原 IP 地址 s.substr(n, m) // 从字符串s的索引n开始&#xff0c;向后截取m个字符 例&#xff1a; string s "aaabbbcccddd"; string s1 s.substr(2,3); 此时s1为abb 1 131 分割回文串 切割问题&#xff0c;前文均为组合问题。组…

【Promptulate】一个强大的LLM Prompt Layer框架

本文节选自笔者博客&#xff1a; https://www.blog.zeeland.cn/archives/promptulate666 项目地址&#xff1a;https://github.com/Undertone0809/promptulate &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是Zeeland&#xff0c;全栈领域优质创作者。&#x1f4dd;…

pyinstaller打包为.exe过程中的问题与解决方法

目录 问题一&#xff1a;.exe文件过大问题二&#xff1a;pyinstaller与opencv-python版本不兼容问题三&#xff1a;打开文件时提示***.pyd文件已存在问题四&#xff1a;pyinstaller打包时提示UPX is not available.另&#xff1a;查看CUDA成功配置的方法 pyinsatller -F -w mai…

瑞吉外卖 - 开发环境搭建(2)

某马瑞吉外卖单体架构项目完整开发文档&#xff0c;基于 Spring Boot 2.7.11 JDK 11。预计 5 月 20 日前更新完成&#xff0c;有需要的胖友记得一键三连&#xff0c;关注主页 “瑞吉外卖” 专栏获取最新文章。 相关资料&#xff1a;https://pan.baidu.com/s/1rO1Vytcp67mcw-PD…

网络编程启蒙

文章目录 局域网、广域网WAN口LAN口那么什么是局域网和广域网呢&#xff1f; IP地址IPV4动态规划ipNAT IPV6IPV6的普及IPV6的应用 端口号协议协议分层协议分层的好处 OSI物理层数据链路层网络层&#xff08;全局&#xff09;传输层负责应用层网络设备所在分层网络分层中的一组重…

mybatis-plus实现乐观锁和悲观锁

目录 定义 场景 乐观锁与悲观锁 模拟修改冲突数据库中增加商品表 乐观锁实现 悲观锁 定义 1&#xff09;乐观锁 首先来看乐观锁&#xff0c;顾名思义&#xff0c;乐观锁就是持比较乐观态度的锁。就是在操作数据时非常乐观&#xff0c;认为别的线程不会同时修改数据&#x…

红旅在线语料库网站 开发笔记

桂林红色旅游资源在线语料库网站 &#xff08;Guilin Red Culture Corpus&#xff09;提供双语文本检索和分享功能。供英语、翻译相关专业的爱好者&#xff0c;学生和老师学习使用。 该网站是对BiCorpus开源项目的二次开发(已获得原作者授权)。 项目仓库&#xff1a;RedCorpu…

小米miui14更新公测

一人内测&#xff0c;全员公测&#xff0c;懂得都懂[滑稽] 必应搜索醉里博客http://202271.xyz?miui 1月份有一部分机型就要公测了&#xff0c;相关用户愿意等的可以再等等。 本篇介绍最简单粗暴的替换法&#xff0c;不管你刷没刷过机都可以用这个方法偷渡MIUI14 ★★★评论…

区间预测 | MATLAB实现QRCNN-GRU卷积门控循环单元分位数回归时间序列区间预测

区间预测 | MATLAB实现QRCNN-GRU卷积门控循环单元分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRCNN-GRU卷积门控循环单元分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 1.Matlab实现基于QRCNN-GRU分位数回归卷积门控循环…

可靠性设计:元器件、零部件、原材料的选择与控制

通常&#xff0c;一个产品由各种基础产品(包括各种元器件、零部件等)构成。由于元器件、零部件的数量、品种众多&#xff0c;所以他们的性能、可靠性、费用等参数对整个系统性能、可靠性、寿命周期费用等的影响极大。 原材料则是各种基础产品的基本功能赖以实现的基础&#xf…

储氢合金/金属氢化物床层有效导热系数的数学模型

最近看到一篇有关“储氢合金/金属氢化物床层有效导热系数的数学模型”的论文&#xff0c;文章DOI&#xff1a;10.1016/j.energy.2023.127085&#xff0c;文章提到的数学物理模型还算好理解一些&#xff0c;特意分享给各位感兴趣的大佬。 一、物理模型简图和假设 文章里&#xf…

数模之Apriori关联算法

一、问题 中医证型的关联规则挖掘 背景&#xff1a; 中医药治疗乳腺癌有着广泛的适应证和独特的优势。从整体出发&#xff0c;调整机体气血、阴阳、脏腑功能的平衡&#xff0c;根据不同的临床证候进行辨证论治。确定“先证而治”的方向&#xff1a;即后续证侯尚未出现之前&am…

前后端分离博客】学习笔记04 --- 文件上传-策略模式

一、思路 我们定义一个接口&#xff08;就比如接下来要实现的文件上传接口&#xff09;我们定义所需要实现的策略实现类 A、B、C、D&#xff08;也就是项目中所使用的四种策略阿里云Oss上传、腾讯云Cos上传、七牛云Kodo上传、本地上传&#xff09;我们通过策略上下文来调用策略…

基础IO(一)

基础IO&#xff08;一&#xff09; 1.文件基础概念2.C语言接口回顾3.系统接口4.文件系统调用5.三个标准6.输出缓冲区 &#x1f31f;&#x1f31f;hello&#xff0c;各位读者大大们你们好呀&#x1f31f;&#x1f31f; &#x1f680;&#x1f680;系列专栏&#xff1a;【Linux的…

股票K线基础知识2

光头光脚阳线 光头光脚阳线形态与特征描述 光头光脚阳线表示股票的最高价与收盘价相同&#xff0c;最低价与开盘价一样。光头光脚阳线上下不带影线&#xff0c;表明从一开盘买方就积极进攻&#xff0c;中间也可能出现买方与卖方的斗争&#xff0c;但买方发挥了最大力量。始终占…

18.JAVA之三大框架Spring、IOC和DI、拦截器、MVC项目、Mybatis持久层、动态SQL、SSM

一、Spring框架 1.1概述 其中最核心的是&#xff1a;IoC控制反转、DI依赖注入、Bean工厂、SpringAOP面向切面编程、事务控制。 Spring是一个开源框架&#xff0c;是为了解决企业应用程序开发复杂性而创建的。 SpringMVC框架用来接受浏览器的请求和给浏览器做出响应 Mybatis…

C++:设计一个线程安全的队列

文章目录 1. 目的2. 实现&#xff1f;验证&#xff01;makefileQueue 类的 public 成员单元测试 3. 实现 Queue 类的方案 1. 目的 串行的程序只用到单个 CPU 核心&#xff0c; 希望加速整个程序&#xff0c; 考虑使用多线程加速。典型情况下可以找到生产者、消费者&#xff0c…

基于ESP或ESP8266 单通道Lorawan网关硬件制作

软件代码设计资料下载链接》》 基于 Comresult PCB 的单通道网关 介绍 这是 ESP8266 LoRa 网关的最新版本。基于 ESP8266 mcu 的 LoRa 网关在过去几年里有了很大的发展。您想构建一个小型网关并保持尽可能多的 GPIO 引脚可用&#xff0c;Hallard 板是无与伦比的。另一种解决…

C++多态练习题

文章目录 1.虚函数的调用过程2.虚函数例题例题一例题二例题三例题四例题四 1.虚函数的调用过程 从汇编上面来看&#xff1a; []代表指针解引用操作 1.op指向test对象的首地址&#xff08;存放vptr&#xff09;&#xff0c;并存放在eax里面&#xff1b; 2.将eax所指之物(虚表…