ChatGPT不会很快接管人类工作,AI也不会免费打工

news2024/11/13 16:10:26

ChatGPT 等大模型的相继发布,让很多人倍感压力,害怕 AI 会很快接管他们的工作。对此,OpenAI 也曾发表过一项研究,表明 ChatGPT 的影响涵盖所有收入阶层,且高收入工作可能面临更大的风险。事实到底如何呢?
在这里插入图片描述

我们应该将所有的工作,即使是那些令人满意的工作都实现自动智能化吗?

这是未来生命研究所 (Future of Life Institute) 最近提出的几个问题之一,该研究所呼吁暂停大型人工智能实验,目前埃隆・马斯克 (Elon Musk) 、Steve Wozniak 和 Andrew Yang 等 1 万多人均已签署了该倡议。尽管可能有一些炒作的意味,但它听起来仍十分严重 —— 然而,人工智能究竟如何被用于实现所有工作的自动智能化呢?先不考虑这是否可取 —— 试想,它真的可能吗?

麻省理工学院连接科学研究所研究员 Douglas Kim 表示:我认为真正的障碍是,我们从 OpenAI 和谷歌 Bard 看到的通用人工智能功能的涌现,与早期互联网普遍可用或云基础设施服务可用的情况类似。它还没有像提到的那样,为数亿工作者的普遍使用做好准备。

即使研究人员也无法跟上 AI 创新的步伐

Douglas Kim 指出,虽然革命性的技术可以迅速传播,但在被证明为有用、易于使用的应用程序之前,它们通常无法得到广泛运用。他指出,生成式 AI 将需要特定的商业应用,才能超越早期采用者的核心受众。

Augment 公司 AI 负责人 Matthew Kirk 也持相似观点:我认为 AI 行业正在发生的事情与互联网早期发生的事情类似。当时的互联网各种观点非常混乱,没有标准。人类需要时间和合作来确定人们遵循的标准。即使是像测量时间这样平凡的事情也非常复杂。

标准化是人工智能发展的痛点。用于训练模型和微调结果的方法是保密的,这使得有关它们是如何运作这一基本问题难以解答。OpenAI 一直在吹捧 GPT-4 通过众多标准化测试的能力 —— 但模型是真正理解了测试,还是仅仅只是训练重现正确答案呢?对于它能够处理新奇任务的能力,这又意味着什么呢?研究人员似乎无法就此答案达成一致,也无法就可能用于得出结论的方法达成一致。
在这里插入图片描述

OpenAI 的 GPT-4 可以在很多标准化测试中取得好成绩。它是真正理解了它们,还是接受了正确答案的训练?

即使可以就标准达成一致,设计和生产广泛使用在基于 GPT -4 等大语言模型 (LLMs) 或其他生成式 AI 系统的 AI-powered 工具所需的物理硬件也可能是一个挑战。Optiver 全球研究基础设施负责人 Lucas A. Wilson 认为,AI 行业正在进行一场军备竞赛,以生产出尽可能复杂的大型语言模型(LLM)。这反过来又迅速增加了训练模型所需的计算资源。

和人类一样,AI 也不会免费工作

与此同时,开发人员必须找到应对限制的方法。从零开始训练一个强大的大型语言模型(LLM)可以带来独特的机会,但这只适用于资金充足的大型组织。实现一项可以运用现有模型的服务要便宜得多 (例如,Open AI 的 ChatGPT-3.5 Turbo 对 API 访问的定价约为每 1000 个英语单词 0.0027 美元)。但当人工智能驱动的服务变得流行时,成本仍然会增加。无论哪种情况,推出可无限制使用的 AI 都是不现实的,这将迫使开发者做出艰难的选择。

Hidden Door,一家通过构建 AI 平台来制作叙事型游戏的初创公司,其首席执行官兼联合创始人 Hilary Mason 表示:一般来说,依靠 AI 创立的初创公司应该对所有特定供应商应用程序编程接口(API)的依赖都持非常谨慎的态度。我们也可以构建不必让 GPU 成为核心的架构,但这需要相当多的经验。
在这里插入图片描述
Hidden Door 正在开发用于帮助用户运用人工智能来制作独特叙事体验的软件。这是一个用于生成叙事游戏的 AI-powered 屏幕截图工具。它包括用户可以选择的多个 character 和 prompt。

大多数基于生成式 AI 构建的服务都会对每月生成的内容量设有一个固定的上限。这些专业服务费用对于企业来说可能会增加成本,从而拖慢人们工作任务智能自动化的步伐。即使是拥有大量资源的 OpenAI,也会根据当前的负载限制 ChatGPT 的付费用户:截至本文撰写时,它所设置的上限是每 3 小时 25 次 GPT-4 查询。因而,对于任何想要依赖 ChatGPT 工作的人来说,这都是一个巨大问题。

AI-powered 工具的开发人员还面临着一个和计算机本身一样古老的挑战 —— 设计一个好的用户界面。一个能够完成许多任务的强大 LLM(大型语言模型)应该是一个无与伦比的工具,但是如果使用它的人无从下手,那么它完成任务的能力就无关紧要了。Kirk 指出,虽然 ChatGPT 是易于使用的,但当用户需要专注于特定的任务时,通过聊天与 AI 交互的开放性可能被证明会令人无所适从。

Kirk 说:「我从过往经历中了解到,让工具完全开放往往会给用户带去困惑,而非帮助。你可以把它想象成一个有着无穷无尽门廊的大厅。大多数人都会困惑重重,手足无措,呆在原地。我们仍有诸多工作要做,来确定为用户展示最优的那扇门「。Mason 也有类似的观察,他补充说:「就像 ChatGPT 主要是对 GPT-3 的 UX 优化一样,我认为我们仅仅只是刚开始创造出 UI 设计中的隐喻,我们还需要在产品中有效地运用 AI 模型。」

训练使用 AI 本身就是一项工作

幻觉(hallucination),作为 LLM 一个特殊的问题,早已引发了争议,它还严重阻碍到了为敏感且重要的工作构建 AI 工具的进程。LLM 有一种令人难以置信的能力,它可以生成独特的文本,讲述笑话,编造关于虚构人物的事迹。然而,当精确性和准确性成为任务的关键时,这个技能却变成了一种障碍,因为 LLM 经常会将不存在的虚假消息来源或不正确的陈述当作事实。

Kim 表示:在某些受到严格监管的行业 (银行、保险、医疗保健),公司的特定职能部门都很难调和好非常严格的数据隐私和防止歧视的其他监管要求之间的关系。在这些受监管的行业,你不能让 AI 犯那种在写课程论文时还可以看得过去的错误。

企业可能会争先雇佣那些具备 AI 工具专业知识的员工。人工智能安全和研究公司 Anthropic 最近因为一则招聘广告上了头条,他们在招聘一名 prompt 工程师和图书管理员时,注明需要应聘者在完成其它本职工作以外,可负责建立 “一个具备高质量 prompt 或 prompt 链的图书馆,以完成各种任务”。薪水 17.5 万到 33.5 万美元。

然而,Wilson 看到了有效使用 AI 工具所需的专业知识与 AI 承诺提供的效率之间的矛盾。

如何招聘人才来从事为 LLMs 提供培训的全新工作,以解放那些早已专注于更复杂或更抽象工作任务的员工呢?

尽管存在这些问题,但利用人工智能增强工作仍可能是值得的。计算机革命显然就是如此:尽管许多人需要训练才能使用 Word 和 Excel 工具,但很少有人会提出打字机或图表纸可以作为更好的替代。正如未来生命研究所的信中所担忧的那样,「我们用自动化取代所有工作,包括令人满意的工作」。虽然这样的未来至少还需要半年多的时间,但人工智能革命现在正在拉开帷幕,而且从今天起的十年里,人工智能革命的画卷将会不断展开。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/512036.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IT知识百科:什么是下一代防火墙和IPS?

引言 随着网络攻击的日益增多,防火墙和入侵防御系统(Intrusion Prevention System, IPS)已成为企业网络安全的必备设备。然而,传统的防火墙和IPS已经无法满足复杂多变的网络安全威胁,因此,下一代防火墙和I…

Java集合(底层设计与实现)

Java集合(底层设计与实现) 集合体系 List接口 基本介绍 元素有序(即添加顺序和取出顺序一致)、且可重复支持索引有下标,下标对应元素在容器中的位置 ArrayList 基本介绍:底层由数组实现;在…

软考 软件设计师数据结构二笔记

查找基本概念 顺序查找 折半查找(二分查找顺序存储 ) 查找一个数据先给他折中,看看要查找的是不是大于中间值如果大于前面的就不用查找了 l和r指向对应下标 二分查找补充 上图描述如何构造这般查找判定树,一般都是下取整 …

PDF怎么转Word?简单几步轻松操作

PDF格式是目前最为流行的电子文档格式之一。但是,当我们需要编辑或修改PDF文件时,通常需要将其转换为Word文档格式。在本文中,我们将介绍如何将PDF文件转换为Word文档,并且列举PDF和Word文档操作上的差异。 PDF转Word文档操作方法…

19 树表的查找

文章目录 二叉排序树(BST)查找操作二叉排序树的存储结构查找实现查找算法分析二叉排序树的平均查找长度 插入操作删除操作代码实现 平衡二叉树(AVL)插入&旋转操作插入操作四种旋转情况代码实现 删除操作查找操作 介绍 树表查找是一种在树形数据结构中…

非法捕捞识别预警系统 yolov7

非法捕捞识别预警系统通过yolov7网络模型AI视频分析技术,非法捕捞识别预警系统模型算法能够对河道湖泊画面场景中出现的非法捕捞行为进行7*24小时不间断智能检测识别实时告警通知相关人员及时处理。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测&#xff…

应用网关Nginx+Https证书+内网穿透+图片切割水印+网关登录

一、开源项目简介 Apiumc Gateway 它一个工具等于 Nginx Https证书 内网穿透 图片切割水印 网关登录 Apiumc Gateway 是高性能的Web网关,它从底层Socket原始通信层开始,采用多线程、多任务模式从新构建Web服务,充分发挥当下多核的CPU的…

当代年轻人搞副业有多野?工资6000,兼职1W...

凌晨12:00,我被同做新媒体的闺蜜小冉震了出来。 这是投稿出去,第10086次没有回声。 那种无力感掐着我的脖子,感觉整个人要窒息了。 写稿,真的好难,我好想放弃。 可是,每月被花呗、信用卡、房租支配的恐惧却…

C++【模板进阶】

✨个人主页: 北 海 🎉所属专栏: C修行之路 🎃操作环境: Visual Studio 2019 版本 16.11.17 文章目录 🌇前言🏙️正文1、非类型模板参数1.1、使用方法1.2、类型要求1.3、实际例子:arr…

详解:三子棋以及N子棋的实现

三子棋以及N子棋的实现 初始化棋盘打印棋盘玩家下棋电脑下棋判断输赢主函数的实现(test.c)game.c的实现game.h的实现 铁汁们~今天给大家分享一篇三子棋以及N子棋的实现,来吧,开造⛳️ 实现流程: 1.游戏不退出,继续玩下一把&#x…

ML之FE:基于波士顿房价数据集利用LightGBM算法进行模型预测然后通过3σ原则法(计算残差标准差)寻找测试集中的异常值/异常样本

ML之FE:基于波士顿房价数据集利用LightGBM算法进行模型预测然后通过3σ原则法(计算残差标准差)寻找测试集中的异常值/异常样本 目录 基于波士顿房价数据集利用LiR和LightGBM算法进行模型预测然后通过3σ原则法(计算残差标准差)寻找测试集中的异常值 # 1、定义数据…

软件架构复习笔记(张友生教材版本)

考纲(张友生版本软件架构 考试题型: 10*3单选 5*3简答题 5*3设计图(含画图) 10*2 论述题 10*2综合题 复习以课件为主,书为辅 第一章 (软件危机) ? ? 构造模型与实现 掌握软件结构体系核心模型 第二章 软件体…

K8s之Pod最小调度单元详解

文章目录 一、Pod概念1、Pod是什么?2、Pod网络共享实现方式3、Pod存储共享方式4、创建Pod整体流程 二、使用YAML文件定义Pod资源1、Pod资源清单YAML文件书写技巧1. YAML语法格式:2. 配置Linux tab缩进两个空格3. 使用kubectl explain帮助命令 2、创建Pod…

ChatGPT客服系统产品-利用chatgpt训练企业知识开发个性化客服系统

打造最前沿的AI智能客服系统,基于自有数据语料,充分运用ChatGPT的大模型自然语言生成能力,定制化客服系统为企业提供自主性的客服服务能力。 ChatGPT如何革新智能客服? 根据当前ChatGPT的使用情况,我们发现未来中短期内…

基于 DDR3 的串口传图帧缓存系统设计实现(fifo2mig_axi )

文章目录 前言一、接口转换模块设计二、fifo2mig_axi 模块二、接口转换模块仿真四、fifo2mig_axi_tb五、仿真展示 前言 结合串口接收模块和 tft 显示屏控制模块,设计一个基于 DDR3 的串口传图帧缓存系统。 提示:以下是本篇文章正文内容,下面…

次世代烘焙 法线贴图 相关知识

一般将低模 高模的法线贴图实现大量细节模型画面的游戏称为次时代游戏。 次世代常用软件 低模:Maya、3Dmax、Topogun 。 中模:Maya、3Dmax 。 高模:Maya、3Dmax、Zbrush。 UV:Maya、Zbrush、Unfold3D、Uvlayout 。 烘焙&#x…

【观察】华为重构分销伙伴体系,坚持“长期主义”做大分销市场

毫无疑问,随着数字化转型的加速,当前不同类型、不同规模的企业,在面临数字化转型时呈现出了不同的困境和特征,同时对合作伙伴也提出了更高的要求,因此唯有通过“精耕细作”的方式才能更好地加速企业数字化转型的步伐。…

AdaSparse: 自适应稀疏网络的多场景CTR预估建模

▐ 摘要 CTR(Click-through rate)预估一直是推荐/广告领域重要技术之一。近年来,通过统一模型来服务多个场景的预估建模已被证明是一种有效的手段。当前多场景预估技术面临的挑战主要来自两方面:1)跨场景泛化能力:尤其对稀疏场景&…

【分布式锁】Redisson分布式锁的使用(推荐使用)

文章目录 前言一、常见分布式锁方案对比二、分布式锁需满足四个条件三、什么是Redisson?官网和官方文档Redisson使用 四、Redisson 分布式重入锁用法Redisson 支持单点模式、主从模式、哨兵模式、集群模式自己先思考下,如果要手写一个分布式锁组件,怎么做&#xff…

深入理解Java虚拟机:JVM高级特性与最佳实践-总结-1

深入理解Java虚拟机:JVM高级特性与最佳实践-总结-1 Java内存区域与内存溢出异常运行时数据区域程序计数器Java虚拟机栈本地方法栈Java堆方法区 OutOfMemoryError异常Java堆溢出 垃圾收集器与内存分配策略对象是否可以被回收引用计数算法可达性分析算法 Java内存区域…