第三章 图像的低通与高通滤波

news2025/1/13 10:00:18

文章目录

  • 前言
  • 一、卷积操作
  • 二、低通滤波
    • 1. 方盒滤波与均值滤波
    • 2. 中值滤波
    • 3.高斯滤波
      • 3.1 高斯分布
      • 3.2 滤波流程
      • 3.2 OpenCV代码及手动实现
    • 4. 双边滤波
      • 4.1 原理
      • 4.2 OpenCV代码实现
  • 二、高通滤波
    • 1. Sobel算子
    • 2. Schar算子
    • 3.拉普拉斯算子
    • 4. Canny边缘检测
      • 4.1 算法流程
        • 4.1.2 图像降噪
        • 4.1.3 计算梯度
        • 4.1.4 非极大值抑制
        • 4.1.5 双阈值检测
      • 4.2 OpecvCV代码
  • 总结


前言

前面讲解了一些图像的基本理论以及操作,这一张将聚焦与图像的滤波操作。

一、卷积操作

解释:

图像卷积是一种在图像处理中广泛使用的操作。其基本思想是在图像的每个像素点上,以该点为中心选择一个固定大小的滤波器模板(通常是一个矩阵),并将该滤波器与该像素点及其相邻像素点进行卷积运算,生成一个新的像素值。通过将该滤波器模板与整张图像进行卷积操作,我们可以对图像进行一些线性操作,例如模糊、锐化、边缘检测等。

“卷积”这个术语最初是从数学领域中引入到信号和图像处理领域的。在数学中,卷积是两个函数之间的一种数学运算,它在函数之间进行加权平均的积分运算,可以用来描述信号在系统中的传递和变形过程。在信号和图像处理中,卷积操作的本质是一种加权平均的过程,它考虑不同像素对卷积结果的贡献程度,从而实现一些常见的图像处理操作。
在这里插入图片描述

OpenCV中的一个函数----cv2.filter2D,可用于实现这种卷积运算操作。

cv2.filter2D函数的调用格式如下:

cv2.filter2D(src, ddepth, kernel, dst=None, anchor=None, borderType=None)

函数的参数解释如下:

  • src:需要执行卷积操作的输入图像,可以是单通道或多通道图像。
  • ddepth:输出图像的深度(即数据类型),通常设置为-1,表示和输入图像的深度相同。
  • kernel:定义卷积操作的核,可以是任意大小的数组。
  • dst:卷积操作的输出图像,可以选择是否使用。
  • anchor:表示卷积核的锚点,通常设置为(-1, -1),表示锚点位于核的中心。
  • borderType:处理边界问题的方法,默认为cv2.BORDER_DEFAULT,表示默认使用边界反射。其它可选值包括cv2.BORDER_CONSTANTcv2.BORDER_REPLICATE等。

注:边界像素周围可能不够卷积核的大小,因此边界需要进行边界扩展,这也就是filter2D中设置borderType参数的原因。

二、低通滤波

作用:

  • 消除图片中的高斯噪声
  • 消除图片中的椒盐噪声
  • 图片模糊

高斯噪声是一种线性加性噪声,通常表示为服从高斯分布(正态分布)的随机变量的噪声。高斯噪声在图像处理中非常常见,特别是在图像传感器、摄像头、图像压缩等过程中,由于各种原因(如热噪声、传感器噪声、电子噪声、压缩算法噪声等),会产生随机干扰信号,从而引入高斯噪声。

椒盐噪声是一种常用的数字图像噪声模型,它是指在一幅图像中将一些像素点随机地变成纯黑色或纯白色。这种噪声通常是由于图像采集或传输中的信号干扰引起的,也可以是为了模拟真实世界中的图像失真而添加的。椒盐噪声会破坏图像的细节和纹理,导致图像质量下降,并使图像的分析和处理变得更为困难。

1. 方盒滤波与均值滤波

  • 卷积核
    K = α [ 1 1 ⋯ 1 1 1 ⋯ 1 ⋮ ⋮ ⋯ ⋮ 1 1 ⋯ 1 ] h × w K = \alpha \begin{bmatrix} 1 & 1 & \cdots &1\\ 1 & 1 & \cdots &1\\ \vdots & \vdots & \cdots &\vdots\\ 1 & 1 & \cdots &1\\\end{bmatrix}_{h×w} K=α 111111111 h×w
  • α = 1 h × w \alpha=\frac{1}{h×w} α=h×w1时,该卷积核是实现均值滤波。当 α \alpha α等于1时,该卷积实现的是方盒滤波,当像素值超出255时值为255。
# 方盒滤波
# normalize:正交化,一般都设置为 True,此时等同于均值滤波
cv2.boxFilter(src, ddepth, kernelSize:tuple[, dst[, anchor[, normalize[, borderType]]]]) -> dst

# 均值滤波
cv2.blur(src, kernelSize:tuple[, dst[, anchor[, borderType]]]) -> dst

在这里插入图片描述

2. 中值滤波

  • 实现:对卷积核框住的像素值进行排序,取中间值作为输出结果。
    cv2.medianBlur(src, kernelSize:int[, dst]) -> dst
    
  • 效果:适合去除椒盐噪声
    在这里插入图片描述

3.高斯滤波

3.1 高斯分布

根据本科期间所学习的概率论可知,高斯分布是一种连续型的分布,具有概率密度函数,包括一维以及二维高斯分布:

  • 一维高斯分布
    • 概率密度函数: f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sigma\sqrt[]{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=σ2π 1e2σ2(xμ)2 ,其中 μ \mu μ为样本均值,图像上表现为高峰的横坐标, σ \sigma σ为样本标准差,图像上表现为高峰的高度。标准差越大越不均匀,因此曲线比较平缓。
  • 二维高斯分布
    -概率密度函数: f ( x , y ) = 1 2 π σ x σ y 1 − ρ 2 exp ⁡ ( − 1 2 ( 1 − ρ 2 ) [ ( x − μ x ) 2 σ x 2 + ( y − μ y ) 2 σ y 2 − 2 ρ ( x − μ x ) ( y − μ y ) σ x σ y ] ) f(x,y) = \frac{1}{2\pi \sigma_x \sigma_y \sqrt{1-\rho^2}}\exp{\Big(-\frac{1}{2(1-\rho^2)}\big[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x \sigma_y}\big]\Big)} f(x,y)=2πσxσy1ρ2 1exp(2(1ρ2)1[σx2(xμx)2+σy2(yμy)2σxσy2ρ(xμx)(yμy)]),其中, x x x y y y 表示二维空间中的横、纵坐标, μ x \mu_x μx μ y \mu_y μy 表示两个坐标轴上的均值, σ x 2 \sigma_x^2 σx2 σ y 2 \sigma_y^2 σy2 分别表示两个方向上的方差, ρ \rho ρ 表示两个方向上的相关系数。在这里插入图片描述
    二维高斯分布太复杂,作如下假设:
    • μ 1 = μ 2 = 0 \mu_1=\mu_2=0 μ1=μ2=0
    • ρ = 0 \rho=0 ρ=0
      f ( x , y ) = 1 2 π σ x σ y exp ⁡ ( − 1 2 [ x 2 σ x 2 + y 2 σ y 2 ] ) f(x,y) = \frac{1}{2\pi \sigma_x \sigma_y} \exp{\Big(-\frac{1}{2}\big[\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\big]\Big)} f(x,y)=2πσxσy1exp(21[σx2x2+σy2y2])

3.2 滤波流程

  1. 假定卷积核的中心坐标(x, y)为(0, 0),然后得到周围的坐标值:
    在这里插入图片描述
  2. 将坐标值带入简化后的二维高斯分布概率密度函数,并取 σ 1 = σ 2 = 1.5 \sigma_1=\sigma_2=1.5 σ1=σ2=1.5
    在这里插入图片描述
  3. 由于计算得到的值为概率密度,并非概率值,所以还需要转为概率。用每个值除以卷积核的总和得到概率值,从而得到高斯模板卷积核:
    在这里插入图片描述
  4. 整数高斯模板:所有高铝之除以左上角的概率值,然后四舍五入获得整数值,最后还要再归一化,前面加个 1 所有整数和 \frac{1}{所有整数和} 所有整数和1

为啥需要整数的高斯模板我不太清楚。

  1. 最后用获得的高斯模板卷积核进行卷积运算。

3.2 OpenCV代码及手动实现

  • 手动实现高斯滤波:

    import numpy as np
    import cv2
    
    
    def naive_gaussian_blur(img, kernel_size, sigma):
        half_kernel_size = kernel_size // 2
        kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32)
    
        constant = 1 / (2 * np.pi * sigma**2)
    
        for i in range(-half_kernel_size, half_kernel_size + 1):   #-2到2
            for j in range(-half_kernel_size, half_kernel_size + 1):
                kernel[i + half_kernel_size, j + half_kernel_size] = constant * np.exp(
                    -(i**2 + j**2) / (2 * sigma**2)
                )
    
        kernel /= kernel.sum()  #获取概率值
    
        output = np.zeros_like(img, dtype=np.float32)
    
        for x in range(half_kernel_size, img.shape[0] - half_kernel_size):
            for y in range(half_kernel_size, img.shape[1] - half_kernel_size):
                output[x, y] = np.sum(
                    img[
                        x - half_kernel_size : x + half_kernel_size + 1,
                        y - half_kernel_size : y + half_kernel_size + 1,
                    ]
                    * kernel
                )
    
        output = np.clip(output, 0, 255).astype(np.uint8)
    
        return output
    
    
    img = cv2.imread("F:/MyOpenCV/ai.jpg", cv2.IMREAD_GRAYSCALE)
    img = cv2.resize(img, (0, 0), fx=0.3, fy=0.3, interpolation=cv2.INTER_LINEAR)
    blurred_img = naive_gaussian_blur(img, kernel_size=5, sigma=2)
    cv2.imshow("Original Image", img)
    cv2.imshow("Blurred Image", blurred_img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    在这里插入图片描述

  • OpenCV高斯滤波接口:

# sigmaX :x 的标准差,不指定的话,根据 kernelSize 进行计算
# sigmaY :y 的标准差,默认等于 sigmaX 
cv2.GaussianBlur(src, kernelSize:tuple, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst

4. 双边滤波

4.1 原理

  • 原因: 高斯滤波在除去高斯噪声的同时,也会不加区分的将图像中的边缘一并给加权平均了,所以就导致图片整体看起来很模糊。为了保护边缘,就产生了双边滤波算法
  • 图像边缘: 边缘的产生就是因为相邻的像素的颜色通道差别太大,因此,对相邻像素的颜色做差,就能标记出边缘(差值越大,就说明边缘的可能性越大)
  • 算法思路: 在高斯滤波的基础上再添加一个灰度距离权重。灰度距离越大,灰度距离的权重越小,这样像素在高斯模糊中的占比就越小,进而实现只对颜色相近的像素进行高斯滤波。
  • 当对图像进行双边滤波处理时,可以在每个像素处应用以下公式:

I filtered ( x , y ) = 1 W p ∑ j ∈ Ω I j w p ( x , y ) w c ( ∣ ∣ I j − I x , y ∣ ∣ ) I_{\text{filtered}}(x,y) = \frac{1}{W_p} \sum_{j \in \Omega} I_j w_p(x,y) w_c(||I_j-I_{x,y}||) Ifiltered(x,y)=Wp1jΩIjwp(x,y)wc(∣∣IjIx,y∣∣)

其中, I filtered ( x , y ) I_{\text{filtered}}(x,y) Ifiltered(x,y) 表示处理后的图像像素值, I j I_j Ij 表示邻域内每个像素的像素值, w p w_p wp 表示位置权重函数, w c w_c wc 表示颜色相似度权重函数, ∣ ∣ I j − I x , y ∣ ∣ ||I_j - I_{x,y}|| ∣∣IjIx,y∣∣ 表示两个像素之间的差异。

位置权重函数 w p w_p wp 基于邻域内像素相对于当前像素的空间距离进行计算,通常采用高斯函数来表示,公式如下:

w p ( x , y ) = e − ∣ ∣ P j − P x , y ∣ ∣ 2 2 σ p 2 w_p(x,y) = e^{-\frac{||P_j-P_{x,y}||^2}{2\sigma_p^2}} wp(x,y)=e2σp2∣∣PjPx,y2

其中, P j P_j Pj 是邻域内像素的二维位置, P x , y P_{x,y} Px,y 是当前像素点的二维位置, σ p \sigma_p σp 是距离参数(用于平衡空间距离的贡献)。

颜色相似度权重函数 w c w_c wc 是基于像素值之间的相似程度来计算的,通常也采用高斯函数来表示,公式如下:

w c ( ∣ ∣ I j − I x , y ∣ ∣ ) = e − ∣ ∣ I j − I x , y ∣ ∣ 2 2 σ c 2 w_c(||I_j-I_{x,y}||) = e^{-\frac{||I_j-I_{x,y}||^2}{2\sigma_c^2}} wc(∣∣IjIx,y∣∣)=e2σc2∣∣IjIx,y2

其中, σ c \sigma_c σc 是颜色空间的参数,用于平衡颜色相似度的贡献。

总权重 W p W_p Wp 是位置权重和颜色相似度权重的乘积,即:

W p = ∑ j ∈ Ω w p ( x , y ) w c ( ∣ ∣ I j − I x , y ∣ ∣ ) W_p = \sum_{j \in \Omega} w_p(x,y) w_c(||I_j-I_{x,y}||) Wp=jΩwp(x,y)wc(∣∣IjIx,y∣∣)

W p W_p Wp 代入第一个公式中,即可计算出每个像素点的双边滤波值,从而得到处理后的图像。

4.2 OpenCV代码实现

# sigmaColor:sigma_s,高斯分布的标准差
# sigmaSpace:sigma_r,灰度距离的控制值 
cv2.bilateralFilter(src, kernelSize:int, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst

在这里插入图片描述

二、高通滤波

功能:

  • 边缘检测
  • 图像边缘:图像的灰度图中,相邻像素灰度值差距较大的位置。

1. Sobel算子

  • 原理:对图像邻近的灰度像素进行求导,斜率较大的地方,边缘的概率最大。

  • 差分法:图像中近似求导的方法
    I ′ ( x i ) = I ( x i + 1 ) − I ( x i ) x i + 1 − x i {I}'({x_{i})}=\frac{I({x_{i+1}}) - I({x_{i}})}{{x_{i+1}} - {x_{i}}} I(xi)=xi+1xiI(xi+1)I(xi)
    这里只对像素的一个方向进行求偏导(x方向或者y方向)。求导的实际操作仍然是卷积操作,所以对于分母差值也可以省略掉(因为对于同一个卷积核来说左右或者上下的差值是固定的) I ′ ( x i ) = I ( x i + 1 ) − I ( x i ) {I}'({x_{i})}=I({x_{i+1}}) - I({x_{i}}) I(xi)=I(xi+1)I(xi)

  • 卷积核:

    • x方向求偏导:提取竖向的边缘,目标像素左右端的像素进行差值计算
      G x = [ − 1 0 + 1 − 2 0 + 2 − 1 0 + 1 ] G_x = \begin{bmatrix} -1 & 0& +1 \\-2 & 0 & +2 \\-1 & 0 &+1\end{bmatrix} Gx= 121000+1+2+1
    • y方向求偏导:提取横向的边缘,目标像素上下端的像素进行差值计算
      G y = [ − 1 − 2 − 1 0 0 0 + 1 + 2 + 1 ] G_y = \begin{bmatrix} -1 & -2& -1 \\0 & 0 & 0 \\+1 & +2 &+1\end{bmatrix} Gy= 10+120+210+1
# ddepth:cv2.CV_, 结果图像的位深
# dx:对 x 方向求偏导
# dy:对 y 方向求偏导
# ksize:卷积核大小
cv2.Sobel(src, ddepth, dx:bool, dy:bool[, dst[, ksize:int[, scale[, delta[, borderType]]]]]) -> dst
# src中的数据取绝对值
cv2.convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst

  • sobel计算,会导致像素值为负,因此输出图像的位深ddepth应当使用有符号类型,例如cv2.CV_16Scv2.CV32F等。
  • 颜色通道数值不存在负数,所以还需要对计算结果取绝对值convertScaleAbs。
  • 对于横向、竖向的边界要分两次进行,一起提取效果会很差,具体原因见下方。
分开提取边界原因:这是因为在对一个多元函数同时对不同自变量求导时,往往忽略了它们之间的相互影响和依存关系。具体来说,如果一个函数包含$x$和$y$两个变量,那么对$x$求导时会把$y$看作常数而忽略其对$x$的影响;同样地,对$y$求导时会把$x$看成常数而忽略其对$y$的影响。

在这里插入图片描述

2. Schar算子

  • 介绍:对Sobel算子的改进。
  • 卷积核卷积核大小固定3×3
    • x方向求偏导:提取竖向的边缘,目标像素左右的像素进行差值计算
      G x = [ − 3 0 + 3 − 10 0 + 10 − 3 0 + 3 ] G_x = \begin{bmatrix} -3 & 0& +3 \\-10 & 0 & +10 \\-3 & 0 &+3\end{bmatrix} Gx= 3103000+3+10+3
    • y方向求偏导:提取横向的边缘,目标像素上下的像素进行差值计算
      G y = [ − 3 − 10 − 3 0 0 0 + 3 + 10 + 3 ] G_y = \begin{bmatrix} -3 & -10& -3 \\0 & 0 & 0 \\+3 & +10 &+3\end{bmatrix} Gy= 30+3100+1030+3

OpenCV相关接口:

cv2.Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst

3.拉普拉斯算子

  • 思想: Sobel算子是对像素求解一阶导数,最大值处就是边缘;对一阶导数再求导,那么零值处就是边缘,但是,由于利用差分进行计算而且像素点也是离散的,进度丢失大,这个“零”的表现其实不明显。边界显示的还是主要两边的峰值。

  • 拉普拉斯算子定义:
    ▽ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 \bigtriangledown^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} 2f=x22f+y22f

      拉普拉斯算子能表示一个空间曲面的平坦程度,至于为什么这样定义我没有细究。
    
  • 二阶差分
    f(x,y)对x右侧的一阶偏导(因为相邻点像素距离差为1,所以分母为1略去):
    ∂ f ∂ x = f ( x + 1 , y ) − f ( x , y ) \frac{\partial f}{\partial x} = f(x+1,y) - f(x,y) xf=f(x+1,y)f(x,y)
    f(x,y)对x左侧的一阶偏导(同上):
    ∂ f ∂ x = f ( x , y ) − f ( x − 1 , y ) \frac{\partial f}{\partial x} = f(x,y) - f(x-1,y) xf=f(x,y)f(x1,y)
    f(x,y)对x的二阶偏导(右侧一阶减左侧一阶,分母仍然是1略去):
    ∂ 2 f ∂ x 2 = f ( x + 1 , y ) − f ( x , y ) − ( f ( x , y ) − f ( x − 1 , y ) ) = f ( x + 1 , y ) + f ( x − 1 , y ) − 2 f ( x , y ) \begin{aligned} \frac{\partial^2 f}{\partial x^2} &= f(x+1,y) - f(x,y) - (f(x,y) - f(x-1,y)) \\ &= f(x+1,y) + f(x-1,y) - 2f(x,y) \end{aligned} x22f=f(x+1,y)f(x,y)(f(x,y)f(x1,y))=f(x+1,y)+f(x1,y)2f(x,y)
    f(x,y)对y的二阶偏导(同上):
    ∂ 2 f ∂ y 2 = f ( x , y + 1 ) − f ( x , y ) − ( f ( x , y ) − f ( x , y − 1 ) ) = f ( x , y + 1 ) + f ( x , y − 1 ) − 2 f ( x , y ) \begin{aligned} \frac{\partial^2 f}{\partial y^2} &= f(x,y+1) - f(x,y) - (f(x,y) - f(x,y-1)) \\ &= f(x,y+1) + f(x,y-1) - 2f(x,y) \end{aligned} y22f=f(x,y+1)f(x,y)(f(x,y)f(x,y1))=f(x,y+1)+f(x,y1)2f(x,y)
    上面两式相加得到结果:
    ▽ 2 f = f ( x + 1 , y ) + f ( x − 1 , y ) − 2 f ( x , y ) + f ( x , y + 1 ) + f ( x , y − 1 ) − 2 f ( x , y ) = ( f ( x + 1 , y ) + f ( x − 1 , y ) + f ( x , y + 1 ) + f ( x , y − 1 ) ) − 4 f ( x , y ) \begin{aligned} \bigtriangledown^2 f &= f(x+1,y) + f(x-1,y) - 2f(x,y) + f(x,y+1) + f(x,y-1) - 2f(x,y) \\ &= (f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)) - 4f(x,y) \end{aligned} 2f=f(x+1,y)+f(x1,y)2f(x,y)+f(x,y+1)+f(x,y1)2f(x,y)=(f(x+1,y)+f(x1,y)+f(x,y+1)+f(x,y1))4f(x,y)

写成矩阵形式:
I ′ ′ ( x i , y i ) = [ 0 1 0 1 − 4 1 0 1 0 ] ∗ [ I ( x i − 1 , y i − 1 ) I ( x i , y i − 1 ) I ( x i + 1 , y i − 1 ) I ( x i − 1 , y i ) I ( x i , y i ) I ( x i + 1 , y i ) I ( x i − 1 , y i + 1 ) I ( x i , y i + 1 ) I ( x i + 1 , y i + 1 ) ] \mathrm{I}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)=\left[\begin{array}{ccc}0 & 1 & 0 \\1 & -4 & 1 \\0 & 1 & 0\end{array}\right] *\left[\begin{array}{ccc}\mathrm{I}\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}-1}\right) & \mathrm{I}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}-1}\right) & \mathrm{I}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{y}_{\mathrm{i}-1}\right) \\\mathrm{I}\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}}\right) & \mathrm{I}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) & \mathrm{I}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{y}_{\mathrm{i}}\right) \\\mathrm{I}\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}+1}\right) & \mathrm{I}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}+1}\right) & \mathrm{I}\left(\mathrm{x}_{\mathrm{i}+1}, \mathrm{y}_{\mathrm{i}+1}\right)\end{array}\right] I′′(xi,yi)= 010141010 I(xi1,yi1)I(xi1,yi)I(xi1,yi+1)I(xi,yi1)I(xi,yi)I(xi,yi+1)I(xi+1,yi1)I(xi+1,yi)I(xi+1,yi+1)

  • 效果:拉普拉斯算子处理渐变图的能力要强于Sobel算子
cv2.Laplacian(src, ddepth:cv2.CV_[, dst[, ksize:int[, scale[, delta[, borderType]]]]]) -> dst

在这里插入图片描述

4. Canny边缘检测

4.1 算法流程

4.1.2 图像降噪

图像降噪主要采用高斯滤波方式对图像进行降噪,公式描述如下,
I g = G ∗ I I_g = G * I Ig=GI
其中, I g I_g Ig表示高斯滤波后的像素值, G G G表示高斯滤波卷积核, I I I表示原像素。

4.1.3 计算梯度

  1. 利用Sobel算子,计算x, y方向的梯度:
    I s x = G x ∗ I g I s y = G y ∗ I g I_{sx} = G_x * I_g \\ I_{sy} = G_y * I_g Isx=GxIgIsy=GyIg
  2. 计算每个像素的梯度强度:
    I s = I s x 2 + I s y 2 ≈ ∣ I s x ∣ + ∣ I s y ∣ I_s = \sqrt{I_{sx}^2 + I_{sy}^2} \approx \left\lvert {I_{sx}} \right\rvert + \left\lvert {I_{sy}} \right\rvert Is=Isx2+Isy2 Isx+Isy
  3. 计算每个像素的梯度方向:
    θ = a r c t a n ( I s y I s x ) \theta = arctan(\frac{I_{sy}}{I_{sx}}) θ=arctan(IsxIsy)

4.1.4 非极大值抑制

得到的每个像素强度的非局部最大值就全部舍弃掉,进行边缘预选。
有两种方法:

  • 线性插值法: 对比 I s I_s Is I 1 、 I 2 I_1、I_2 I1I2的值,若 I s I_s Is最大,则保留作为边界,否则则舍弃掉。

    I_1,I_2的计算如下:
    在这里插入图片描述
  • 角度近似法: 将中心点周围的像素分为8个方向如下图,刚好每个方向对应的点都是非亚像素点,已知其对应的梯度强度,看中心点的梯度方向 θ \theta θ离哪个方向近就用哪个像素点强度作对比,若中心点大就保留。
    在这里插入图片描述

4.1.5 双阈值检测

用来确定最终的边缘。
在这里插入图片描述
梯度>maxVal:认为是边界像素
梯度<minVal :认为绝对不是边界
梯度介于两者之间判断是否和边界连着,若连着则保留,例如C保留,B舍弃。

判断是否连接会用到DFS或BFS的图的搜索遍历算法,只要周围点中有强边界像素则判其为连接。

4.2 OpecvCV代码

#  threshold1:minVal
# threshold2:maxVal
cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges

在这里插入图片描述

总结

本章主要讲解了卷积操作的基本知识以及低通滤波和高通滤波,低通滤波就是为了消除图像的噪声,但也会让图像变的模糊;高通滤波能够检测图像的边缘,从而进行其他的判断。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/501745.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

垃圾回收小程序开发功能与优势有哪些?

垃圾回收、二手资源回收、废旧物品回收是最近几年社会提倡也越来越受到人们重视的&#xff0c;所以市面上也产生了一系列二手资源回收软件助力再生资源得到更好的利用&#xff0c;同时对环境保护也有很积极的作用。 垃圾资源回收小程序借助微信平台强大的用户群体&#…

CCF-202209-2-何以包邮?01背包

目录 1、题目描述&#xff1a; 2、思路1&#xff1a;动态规划 2.1、确定dp数组及下标含义 2.2、递推公式 2.3、初始化dp数组 2.4、确定遍历顺序 2.5、C实现如下 3、思路2&#xff1a;暴力法-空间换时间 1、题目描述&#xff1a; 新学期伊始&#xff0c;适逢顿顿书城有…

OpenGL(八)——图像逆透视算法IPM

目录 一、前言 二、相机模型 2.1 针孔模型 2.2 相机外参 三、逆透视模型 四、算法总结 一、前言 透视变换&#xff08;Perspective Transformation)是指利用透视中心、像点、目标点三点共线的条件&#xff0c;按透视旋转定律使承影面&#xff08;透视面&#xff09;绕迹线…

Cesium 实战-解决 The browser supports WebGL, but initialization failed 问题

Cesium 实战-解决 The browser supports WebGL, but initialization failed 问题 系统环境版本试错过程解决问题 在公司内网服务器部署 Cesium 项目的时候&#xff0c;发现提示浏览器不支持 WebGL 错误&#xff0c;经尝试&#xff0c;确认 Cesium 1.101.0 以及之前的版本是可以…

职场小白如何快速成为房地产策划专家?全覆盖解密

如果你是刚入行的地产策划新手小白&#xff1a; 1、首先要会房地产的基础知识&#xff0c;相关的政策法规等&#xff0c;因为这些都是制定策略的最基本的依据&#xff0c;如果这些你都不熟&#xff0c;制定出来的策划就会有错误。建议你多买几本地产基础知识的书看看。 2、把…

14.网络编程基础

1.网络编程入门 1.1 网络编程概述【理解】 计算机网络 是指将地理位置不同的具有独立功能的多台计算机及其外部设备&#xff0c;通过通信线路连接起来&#xff0c;在网络操作系统&#xff0c;网络管理软件及网络通信协议的管理和协调下&#xff0c;实现资源共享和信息传递的计…

Axios概述

一、Json-server 获得零编码的完整伪造 REST API zero coding 在不到 30 秒的时间内 &#xff08;认真&#xff09;。 使用 <3 创建&#xff0c;适用于需要快速后端进行原型设计和模拟的前端开发人员&#xff0c;模拟后端发送过来json数据。 1.安装 npm install -g jso…

OPNET Modeler 例程——停等协议的建模和仿真

文章目录 一、概述二、链路模型和包格式创建三、进程模型1.src 进程模型2.sink 进程模型 四、节点模型五、网络模型六、仿真结果 一、概述 本例程是在 OPNET Modeler 中对停等协议的建模和仿真&#xff0c;其中停等协议的操作过程如下&#xff1a; &#xff08;1&#xff09;发…

【Spring Cloud Alibaba】Nacos config的使用和高阶用法

文章目录 &#x1f40d;第一步&#xff0c;创建配置文件到nacos中&#x1f40d;第二步&#xff0c;在项目中配置nacos的地址和指定文件&#x1f40d;第三步&#xff0c;读取配置文件&#x1f426;高阶用法&#x1f426;高阶用法一&#xff1a;使用yaml文件&#x1f426;第一步&…

5年功能测试,薪资定格8K迷茫了....我该如何破局?

前言 来自一位粉丝的投稿&#xff0c;从毕业开始就一直在从事软件测试的工作&#xff0c;到目前已经是第5个年头了&#xff0c;从4k涨到了8K&#xff0c;显而易见我们这位粉丝并不满足现状&#xff0c;于是问我怎么破局&#xff0c;他当下应该干什么事情,或者应该学习什么技术…

从零开始学习Linux运维,成为IT领域翘楚(十)

文章目录 &#x1f525;Linux网络防火墙&#x1f525;Linux内核机制 &#x1f525;Linux网络防火墙 防火墙管理工具 firewalld概述 Centos 系统中集成了多款防火墙管理工具&#xff0c;其中 firewalld服务是默认的防火墙配置管理工具&#xff0c;它拥有基于 CLI&#xff08;…

Aha! Adaptive History-driven Attack for Decision-based Black-box Models

AHA!基于决策的黑盒模型的自适应历史驱动攻击 Aha! Adaptive History-driven Attack for Decision-based Black-box Models ABSTRACT 基于决策的黑盒攻击指的是只使用受害者模型的前1个标签来制作对抗示例。一种常见的做法是从一个大的扰动开始&#xff0c;然后用一个确定的方…

【Nacos源码分析】

Nacos源码分析 Nacos源码分析1.下载Nacos源码并运行1.1.下载Nacos源码1.2.导入Demo工程1.3.导入Nacos源码1.4.proto编译1.4.1.什么是protobuf1.4.2.安装protoc1.4.3.编译proto 1.5.运行 2.服务注册2.1.服务注册接口2.2.客户端2.2.1.NacosServiceRegistryAutoConfiguration2.2.2…

【软件测试】| 软件测试 - 答疑篇

&#x1f397;️ 主页&#xff1a;小夜时雨 &#x1f397;️ 专栏&#xff1a;软件测试 &#x1f397;️ 如何优雅的活着&#xff0c;是我找寻的方向 目录 一、什么是软件测试二、测试和调试的区别三、软件测试和开发的区别 一、什么是软件测试 最常见的理解是&#xff1a;软…

使用J-Link的J-Scope功能查看数据实时波形

使用串口打印波形的不便之处 对于要查看的实时变量&#xff0c;一般可以用串口打印到可以查看波形的上位机上。但是这种办法有几个不方便的地方&#xff1a; 需要根据配套上位机的通讯协议&#xff0c;在单片机上编写上传数据的代码 单片机CPU需要浪费部分时间在串口数据上传上…

Makefile基础教程(变量的介绍和使用)

文章目录 前言一、Makefile变量概念介绍二、Makefile中变量的赋值方式1.简单赋值2.递归赋值3.条件赋值4.追加赋值 三、Makefile赋值在工程中的应用总结 前言 在C语言等语言中存在变量这个概念那么在Makefile中也是存在变量这个概念的&#xff0c;现在就让我们来学习一下什么是…

Solr(5):Solr控制台说明-主面板

1 Dashboard(仪表盘) 访问 http://ip:8983/solr时&#xff0c;出现该主页面&#xff0c;可查看到solr运行时间、solr版本&#xff0c;系统内存、虚拟机内存的使用情况 这里的图片描述 2 Logging(日志) 显示solr运行出现的异常或错误 3 Core Admin (core管理) 主要有Add Cor…

Java--io流知识总结

什么是输入/输出流 Java 程序通过流来完成输入/输出&#xff0c;所有的输入/输出以流的形式处理。因此要了解 I/O 系统&#xff0c;首先要理解输入/输出流的概念。 输入就是将数据从各种输入设备&#xff08;包括文件、键盘等&#xff09;中读取到内存中&#xff0c;输出则正好…

抢先微软,Google版Copilot上线!谷歌宣布给Google全家桶开放Bard功能

夕小瑶科技说 原创作者 | 智商掉了一地、兔子酱 就在本月 5 号&#xff0c;Bard 和 Google Workspace 同步更新了一则新闻&#xff0c;宣布 Workspace 的团队用户即日起可以申请体验由 Bard 大模型驱动的生成式 AI 工具。 这项计划在今年 3 月份首次公布&#xff0c;当时该工具…

上架Google play 提示 不符合64位版本应用的要求

此版本不符合 Google Play 关于提供 64 位版本应用的要求以下 APK 或 App Bundle 面向 64 位设备&#xff0c;但只有 32 位原生代码:[29]请向应用中添加64位和 32 位原生代码。使用 Android App Bundle 发布格式可自动确保每种设备架构仅收到所需加应用的总大小。 在build.gra…