基于R语言的贝叶斯时空数据模型实践技术

news2024/11/23 7:19:18

时间-空间数据(以下简称“时空数据”)是最重要的观测数据形式之一,很多科学研究的数据都以时空数据的形式得以呈现,而科学研究目的可以归结为挖掘时空数据中的规律。另方面,贝叶斯统计学作为与传统统计学并列的方法,在现今的科学研究中占据了重要的地位也越来越多运用时空数据模型中。虽然,贝叶斯理论运用很多但由于时空数据性质与普通独立数据有着很大的不同所以贝叶斯理论在时空数据中的运用仍然是困难的。

【原文链接】:基于R语言的贝叶斯时空数据模型实践技术icon-default.png?t=N3I4https://mp.weixin.qq.com/s?__biz=MzU5NTkyMzcxNw==&mid=2247538812&idx=2&sn=0ea98680253b6389d301359b47588a9b&chksm=fe689e16c91f1700335f546d4b1ad5994c8fd07e5cf12da341d53110b3dcea9c9f02ff93672a&token=625267532&lang=zh_CN#rd

【方式】: 直播 +永久回放+答疑群长期辅助+全套课件资料

【内容介绍】:

《专题一、贝叶斯理论 》:

  1. 贝叶斯定理,先验与后验
  2. 重要值的贝叶斯估计
  3. 可信区间
  4. 模型选择

案例1正态-正态分布的贝叶斯预测

《 专题二、贝叶斯计算 》:

  1. 蒙特卡罗积分初步
  2. 重要性采样
  3. 吉布斯采样
  4. 哈密尔顿蒙特卡罗方法
  5. 积分嵌套拉普拉斯近似

案例2:贝叶斯计算的两个简单模型

案例3:空气污染的贝叶斯模型选择

《专题三、基于点的时空数据模型》:

  1. 时空误差的分布
  2. 带有块的高斯过程
  3. 自回归模型
  4. 时空动态模型
  5. 基于高斯过程的时空模型

案例4:不同区域年空气污染模型及其伤害评估

案例5:降雨量的降尺度模型

案例6:叶绿素水平的趋势估计

专题四、基于点的时空贝叶斯预测》:

  1. 高斯过程的精确预测
  2. 自回归模型的预测
  3. GPP模型的预测
  4. 预测模型的验证

案例7:大气臭氧水平预测

专题五、基于面数据的模型》:

  1. 广义线性模型
  2. 贝叶斯的广义线性模型
  3. 随机效应模型
  4. 时空数据的贝叶斯广义线性模型

案例8:儿童疫苗接种模型

案例9:贫困儿童趋势估计(CAR-AR模型)

特别专题 :栅格数据的空间分层模型及其应用》:

  1. 空间分层及其基本原理
  2. 空间分层与分类的区别
  3. 空间分层的实际操作
  4. 空间分层采样方法
  5. 空间分层采样后的预测(插值)

案例10:基于地形及气候的空间分层模型

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/489112.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【OpenCV】 2D-2D:对极几何算法原理

2D-2D匹配: 对极几何 SLAM十四讲笔记1 1.1 对极几何數學模型 考虑从两张图像上观测到了同一个3D点,如图所示**。**我们希望可以求解相机两个时刻的运动 R , t R,t R,t。 假设我们要求取两帧图像 I 1 , I 2 I_1,I_2 I1​,I2​之间的运动,设第一帧到第二帧的运动为…

MiniGPT-4部署过程

文章目录 项目背景部署过程环境配置与文件准备部署推理报错1报错2 项目背景 2023年4月19日,开源项目MiniGPT-4发布,该项目是由KAUST(沙特阿卜杜拉国王科技大学),是几位博士开发的。 项目地址:https://gith…

Spark大数据处理讲课笔记3.4 理解RDD依赖

文章目录 零、本讲学习目标一、RDD依赖二、窄依赖(一)map()与filter()算子(二)union()算子(三)join()算子 三、宽依赖(一)groupBy()算子(二)join()算子&#…

字符设备驱动

字符设备就是按字节流进行读写的设备,读写数据分先后顺序,如点灯,IIC,SPI,LCD等都是字符设备,这些设备的驱动就叫字符设备驱动。 include/linux/fs.h中 file_operations 结构体为内核驱动操作函数集合&…

如何关闭tomcat?tomcat端口号被占用怎么办

我tomcat一跑就报被占用怎么办?我没开tomcat呀!! 这种情况一般是你上一次打开tomcat没有关tomcat服务就关闭了变成软件(如强行关闭正在运行tomcat的idea),这样你在开tomcat就会显示端口号占用了&#xff0…

API 渗透测试从入门到精通系列文章(上)

导语:这是关于使用 Postman 进行渗透测试系列文章的第一部分。 这是关于使用 Postman 进行渗透测试系列文章的第一部分。我原本计划只发布一篇文章,但最后发现内容太多了,如果不把它分成几个部分的话,很可能会让读者不知所措。 所…

SMOKE Single-Stage Monocular 3D Object Detection via Keypoint Estimation 论文学习

论文地址:SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation Github 地址:https://github.com/open-mmlab/mmdetection3d/tree/main/configs/smoke 1. 解决了什么问题? 预测物体的 3D 朝向角和平移距离对于自动驾…

hive之入门配置

学习hive之路就此开启啦,让我们共同努力 目录 Hive网站: Hive的安装部署: 启动并使用Hive: 安装Mysql: 安装Mysql依赖包: 启动Mysql: 查看密码: 登录root: 密码错误报错: 元数据库配置…

信创国产中间件概览

信创国产中间件概览 中间件国内中间件市场份额第一梯队仍然是IBM> 和Oracle,市场份额合计51%。第二梯队为五大国产厂商,包括东方通、普元信息、宝兰德、中创中间件、金蝶天燕,市场份额合计15%。东方通应用服务器TongWeb对标 开源&#xf…

人脸检测和行人检测3:Android实现人脸检测和行人检测检测(含源码,可实时检测)

人脸检测和行人检测3:Android实现人脸检测和行人检测检测(含源码,可实时检测) 目录 人脸检测和行人检测3:Android实现人脸检测和行人检测(含源码,可实时检测) 1. 前言 2. 人脸检测和行人检测数据集说明 3. 基于YOLOv5的人脸检…

Databend 开源周报第 91 期

Databend 是一款现代云数仓。专为弹性和高效设计,为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务:https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展,遇到更贴近你心意的 Databend 。 新数据类型&…

【Robot Framework】RF关键字大全

收录工作当中最常用的Robot Framework关键字 内容较多,可以CtrlF快速搜索自己想要的 1. RF循环使用(FOR循环) {list1} create list LOG TXT INI INF C CPP JAVA JS CSS LRC H ASM S ASP FOR ${file_type} IN {list1} log 构造请求参数 ${t…

第二十二章 解释器模式

文章目录 前言一、解释器模式基本介绍解释器模式的原理类图 二、通过解释器模式来实现四则运算完整代码抽象表达式类 Expression变量表达式类 VarExpression抽象运算符号解析器 SymbolExpression加法解释器 AddExpression减法解释器 SubExpression计算器类 CalculatorClint 测试…

【C++】仅需一文速通继承

文章目录 1.继承的概念及定义继承的概念继承的定义定义格式:继承关系和访问限定符继承基类成员访问方式的变化 2.基类和派生类对象赋值转换3.继承中的作用域4.派生类的默认成员函数题目:设计出一个类A,让这个类不能被继承(继承了也没用) 5.继承与友元6.继承与静态成员7.复杂的菱…

VK Cup 2017 - Round 1 A - Bear and Friendship Condition(并查集维护大小 + dfs 遍历图统计边数)

题目大意: 给你一些n个点m条边,如果三个点(a,b,c)是合法的,当且仅当 a-b,b-c,c-a都有一条边,问你这个图是否合法,如果有一个或两个点视为合法 思路 考虑什么图才是个合法图:除了点…

Spring 更简单的读取和存储对象

✏️作者:银河罐头 📋系列专栏:JavaEE 🌲“种一棵树最好的时间是十年前,其次是现在” 前面介绍了通过配置文件的方式来存储 Bean 对象,那么有没有更简单的方式去存储 Bean 对象? 有以下 2 种方…

【论文】LearningDepth from Single Monocular Images

2005 NIPS 文章目录 特征提取卷积核的使用Multiscale 多尺度提取特征特征的相对深度 模型结论特征提取数据集导致的error 文章使用了Markov 随机场(Markov Random Fields, MRF) 从单图像上直接估计出图像的深度信息。 与RGBD输入数据不同的是,文章中采用了YCbCr数据…

知识点总结-DAY1

1. 请解释OSI模型中每一层的作用 应用层:为用户提供服务,处理应用程序之间交换的数据。 表示层:处理数据在网络上的表示形式,如加密和解密、压缩和解压缩等。 会话层:建立、维护和终止两个节点之间的会话&#xff0c…

安全防御 --- IPSec理论

IPSec 1、概述: 是IETF(Internet Engineering Task Force)制定的一组开放的网络安全协议,在IP层通过数据来源认证、数据加密、数据完整性和抗重放功能来保证通信双方Internet上传输数据的安全性。 IPSec安全服务 机密性完整性…

雨季时,骑行经过泥泞路段该怎么办?

泥泞路段骑行是一项需要技巧和勇气的挑战。在泥泞路段骑行,骑友又叫玩泥巴,不仅需要良好的车技和身体素质,还需要有足够的经验和判断力,以应对各种突发情况。下面,将从多个角度介绍泥泞路段骑行的挑战和技巧&#xff0…