数据结构(六)—— 二叉树(4)回溯

news2024/11/18 4:27:18

文章目录

  • 一、题
  • 1 257 二叉树的所有路径
    • 1.1 写法1
    • 1.2 写法2


一、题

1 257 二叉树的所有路径

1.1 写法1

递归+回溯:回溯是递归的副产品,只要有递归就会有回溯

首先考虑深度优先搜索;而题目要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径。
在这里插入图片描述
递归和回溯就是一家的,本题也需要回溯。

1、确定递归函数输入输出
要传入根节点,记录每一条路径的vector<int>&,和存放结果集的vector<string>&,这里递归不需要返回值,
void traversal(TreeNode* cur, vector<int>& path, vector<string>& result)
2、确定递归终止条件
一般来说都是if(cur == NULL) return,但是本题要找到叶子节点,就开始结束的处理逻辑了(把路径放进result里)。
那么什么时候算是找到了叶子节点? 是当 cur不为空,其左右孩子都为空的时候,就找到叶子节点。

if (cur->left == NULL && cur->right == NULL) { // 遇到叶子节点
    string sPath;
    for (int i = 0; i < path.size() - 1; i++) { // 将path里记录的路径转为string格式
        sPath += to_string(path[i]);
        sPath += "->";
    }
    sPath += to_string(path[path.size() - 1]); // 记录最后一个节点(叶子节点)
    result.push_back(sPath); // 收集一个路径
    return;
}

3、确定单层递归逻辑
因为是前序遍历,需要先处理中间节点,中间节点就是我们要记录路径上的节点,先放进path中。
path.push_back(cur->val);

然后是递归和回溯的过程,上面说过没有判断cur是否为空,那么在这里递归的时候,如果为空就不进行下一层递归了。
所以递归前要加上判断语句,下面要递归的节点是否为空,如下
if (cur->left) traversal(cur->left, path, result);
此时还没完,递归完,要做回溯啊,因为path 不能一直加入节点,它还要删节点,然后才能加入新的节点。

if (cur->left) {
    traversal(cur->left, path, result);
    path.pop_back(); // 回溯
}
if (cur->right) {
    traversal(cur->right, path, result);
    path.pop_back(); // 回溯
}

4、整合traversal()

class Solution {
private:

    void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
        path.push_back(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中 
        // 这才到了叶子节点
        if (cur->left == NULL && cur->right == NULL) {
            string sPath;
            for (int i = 0; i < path.size() - 1; i++) {
                sPath += to_string(path[i]);
                sPath += "->";
            }
            sPath += to_string(path[path.size() - 1]);
            result.push_back(sPath);
            return;
        }
        if (cur->left) { // 左 
            traversal(cur->left, path, result);
            path.pop_back(); // 回溯
        }
        if (cur->right) { // 右
            traversal(cur->right, path, result);
            path.pop_back(); // 回溯
        }
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        vector<int> path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;
    }
};

1.2 写法2

1、确定输入输出
输入:节点、每条路径string、每条路径组成的vector<string>&
输出:空
void traversal(TreeNode* cur, string path, vector<string>& result)

注意:函数输出定义的是string,每次都是复制赋值,没使用引用,否则就无法做到回溯的效果。(这里涉及到C++语法知识)
2、确定退出条件

if (cur->left == NULL && cur->right == NULL) {
	result.push_back(path);
	return;
}

3、确定单层逻辑
中左右

path += to_string(cur->val); // 中
...  // 退出条件
if (cur->left) traversal(cur->left, path + "->", result); // 左
if (cur->right) traversal(cur->right, path + "->", result); // 右

4、整合

class Solution {
private:

    void traversal(TreeNode* cur, string path, vector<string>& result) {
        path += to_string(cur->val); // 中
        if (cur->left == NULL && cur->right == NULL) {
            result.push_back(path);
            return;
        }
        if (cur->left) traversal(cur->left, path + "->", result); // 左
        if (cur->right) traversal(cur->right, path + "->", result); // 右
    }

public:
    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        string path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;

    }
};

在哪儿回溯的?
如上代码貌似没有看到回溯的逻辑,其实不然,回溯就隐藏在traversal(cur->left, path + "->", result);中的 path + "->"。 每次函数调用完,path并没有加上"->",这就是回溯了。

使用如下代码可以更好的体会到回溯

if (cur->left) {
    path += "->";
    traversal(cur->left, path, result); // 左
    path.pop_back(); // 回溯 '>'
    path.pop_back(); // 回溯 '-'
}
if (cur->right) {
    path += "->";
    traversal(cur->right, path, result); // 右
    path.pop_back(); // 回溯 '>' 
    path.pop_back(); //  回溯 '-' 
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/485418.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第一章 算法概述

第1章-算法概述 总分&#xff1a;100分 得分&#xff1a;30.0分 1 . 填空题 简单 10分 递归算法必须具备的两个条件是___和___ 回答错误 答案 边界条件或停止条件、递推方程或递归方程 2 . 填空题 中等 10分 冒泡排序时间复杂度是___&#xff0c;堆排序时…

深度学习笔记--本地部署Mini-GPT4

目录 1--前言 2--配置环境依赖 3--下载权重 4--生成 Vicuna 权重 5--测试 6--可能出现的问题 1--前言 本机环境&#xff1a; System: Ubuntu 18.04 GPU: Tesla V100 (32G) CUDA: 10.0 项目地址&#xff1a;https://github.com/Vision-CAIR/MiniGPT-4 2--配置环境依赖 …

18.考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化

说明书 MATLAB代码&#xff1a;考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化 关键词&#xff1a;碳交易 电制氢 阶梯式碳交易 综合能源系统 热电优化 参考文档&#xff1a;《考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化》基本复现 仿真平台&#xff1a;M…

洞车常见问题解决指南

洞车常见问题解决指南 1.研发脚本处理问题1.1 WMS出库单无法审核1.2 OMS入库单无法提交&#xff0c;提示更新中心库存失败1.3 当出现OMS下发成功WMS/TMS/DMS还没有任务的情况时处理方案1.4 调度波次生成或者添加任务系统异常1.5 东鹏出库单部分出库回传之后要求重传1.6 更新订单…

表情符号(emoji)大全,只此一文便够了

本文由 大侠(AhcaoZhu)原创&#xff0c;转载请声明。 链接: https://blog.csdn.net/Ahcao2008 表情符号&#xff08;emoji&#xff09;大全、只此一文便够了 摘要集中展示笑脸和动物人庆贺和物品食品和物交通和地点符号 符号表smileys_and_peopleanimals_and_naturefood_and_dr…

Spring Boot集成ShardingSphere实现数据分片(三) | Spring Cloud 42

一、前言 在前面我们通过以下章节对数据分片有了基础的了解&#xff1a; Spring Boot集成ShardingSphere实现数据分片&#xff08;一&#xff09; | Spring Cloud 40 Spring Boot集成ShardingSphere实现数据分片&#xff08;二&#xff09; | Spring Cloud 41 知道数据分片…

Sentinel --- 简介、流量控制

一、Sentinel 1.1、雪崩问题及解决方案 雪崩问题 微服务中&#xff0c;服务间调用关系错综复杂&#xff0c;一个微服务往往依赖于多个其它微服务。 如图&#xff0c;如果服务提供者I发生了故障&#xff0c;当前的应用的部分业务因为依赖于服务I&#xff0c;因此也会被阻塞。此…

Spring AOP(重点、难点)

Spring AOP&#xff08;重点、难点&#xff09; 文章目录 Spring AOP&#xff08;重点、难点&#xff09;1.aop引入1.1 使用场景与概念引入1.2 以数据校验记录操作日志为例 写一组代码进行递推初始阶段 老老实实一个一个写&#xff1a;阶段一 **将日志和验证方法包装到一个类里…

海洋测绘设备使用总结快讯(2023年5月)

本文主要记录最近海洋测绘设备使用过程中遇到一些小问题和解决方法。 1、侧扫声纳绞车的事情 从去年10月到今年3月一直有一个困扰我们的问题&#xff1a;我们侧扫声纳的铠装缆在租用广西北海渔船且用发电机发电的情况下&#xff0c;能连接Klein3000和Klein4000拖鱼&#xff0…

通过Date类学习面向对象

通过手撸这个类的实现&#xff0c;我们可以学习到构造、析构、运算符重载&#xff0c;拷贝构造等面向对象中重要的知识。 首先先看头文件中类的定义&#xff1a; class Date { public:// 获取某年某月的天数int GetMonthDay(int year, int month);// 全缺省的构造函数Date(in…

算法的时间复杂度和空间复杂度(友友们专属限定版)

&#x1f349;博客主页&#xff1a;阿博历练记 &#x1f4d6;文章专栏&#xff1a;数据结构与算法 &#x1f69a;代码仓库&#xff1a;阿博编程日记 &#x1f339;欢迎关注&#xff1a;欢迎友友们点赞收藏关注哦 文章目录 &#x1f3a8;1.算法的复杂度介绍&#x1f3a8;2.时间复…

坤强服务器安装

记录一下服务器安装做raid和安装系统 raid 0 拆分开分别存在3块硬盘,一块坏了,全部不能用了, 但是存储速度最快 raid 1 具有最高的安全性,备份一份,容量只有总容量的一半 raid 10 先组两个raid1,再组两个raid0 .有raid 1的安全性和50%的使用容量 raid 5 安全性&#xff…

汇编二、51单片机内部结构

1、单片机内部资源 以AT89C51单片机为例&#xff0c;参考数据手册。 Atmel官网&#xff1a; https://www.microchip.com/ (1)1个8位CPU。 (2)4K ROM&#xff0c;128字节RAM。 (3)32个GPIO&#xff1b;定时器(Timer)&#xff1b;串口(UART)&#xff1b;中断系统(Interrupt…

Qt之滑动条和进度条(QSlider、QProgressBar)

文章目录 前言一、QSliderQSlider的常用API信号与槽 二、QProgressBar滑动条和滚动条的常用API 总结 前言 在用户界面设计中&#xff0c;滑动条和进度条是常见的控件。Qt中提供了QProgressBar和QSlider两个类来实现滚动条和滑动条。 一、QSlider 在Qt中&#xff0c;QSlider是…

ChatGPT攥写广告文案-写好广告营销软文的必备要点

chatgpt帮助我们写营销软文 Chat GPT是一款强大的自然语言处理模型&#xff0c;可以辅助您编写优秀的营销软文。下面是几个使用 Chat GPT 更好的编写营销软文的建议&#xff1a; 利用Chat GPT自动摘要 Chat GPT能够将一段较长的营销文本精简成几个关键点&#xff0c;这有利于…

32. 最长有效括号

32. 最长有效括号 难度困难2251 给你一个只包含 ( 和 ) 的字符串&#xff0c;找出最长有效&#xff08;格式正确且连续&#xff09;括号子串的长度。 示例 1&#xff1a; 输入&#xff1a;s "(()" 输出&#xff1a;2 解释&#xff1a;最长有效括号子串是 "…

《C语言技术体系》 学习路线总目录 + 思维导图

目录 前言 正文 思维导图 第1章 流程结构 1.1 初识C语言 1.2 流程结构 1.3 数据类型 1.4 运算符表达式 第2章 指针与数组 2.1 指针基本概念 2.2 一维数组 2.3 二维及多维数组 2.4 指针与数组 第3章 模块化重构 3.1 函数 3.2 typedef类型定义 3.3 enum枚举 3.…

手把手教你使用vue2搭建微前端micro-app

​ 简述 本文主要讲述新手小白怎么搭建micro-app&#xff0c;几乎是每一步都有截图说明。上手应该很简单。 本来我之前已经写了一篇手把手教程了&#xff0c;但是当时写的结个太乱了&#xff0c;趁着五一休假&#xff0c;重新整理了一番&#xff0c;加了文章目录&#xff0c;…

如何显示文件夹的后缀和隐藏文件

© Ptw-cwl 文章目录 前言文件夹后缀隐藏文件 如何设置显示文件夹的后缀和隐藏文件 前言 文件夹后缀 文件后缀是指文件名中最后一个“.”后面的一串字符&#xff0c;用来表示该文件的类型或格式。不同的文件类型有不同的后缀&#xff0c;例如&#xff0c;常见的图片文件…

对象浅拷贝的5种方式

参考原文:浅拷贝的五种实现方式 - 掘金 (juejin.cn) 哈喽 大家好啊 最近发现自己对对象都不是很熟练&#xff0c;特别是涉及到一些复制&#xff0c;深浅拷贝的东西 1.Object.assign 首先 我们创建一个空对象obj1 然后创建一个对象obj2 用object.assign(目标对象&#xff0c…