Redis高级——键值对设计

news2024/11/13 18:10:27

1、Redis键值设计

1.1、优雅的key结构

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]
  • 长度不超过44字节
  • 不包含特殊字符

例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:

这样设计的好处:

  • 可读性强
  • 避免key冲突
  • 方便管理
  • 更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为raw模式存储,在raw模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储SDS内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片

1.2、拒绝BigKey

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB
  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
  • Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB

那么如何判断元素的大小呢?redis也给我们提供了命令

推荐值:

  • 单个key的value小于10KB
  • 对于集合类型的key,建议元素数量小于1000

1.2.1、BigKey的危害

  • 网络阻塞
    • 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
  • 数据倾斜
    • BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
  • Redis阻塞
    • 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
  • CPU压力
    • 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用

1.2.2、如何发现BigKey

①redis-cli --bigkeys

利用redis-cli提供的–bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key

命令:redis-cli -a 密码 --bigkeys

②scan扫描

自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)

scan 命令调用完后每次会返回2个元素,第一个是下一次迭代的光标,第一次光标会设置为0,当最后一次scan 返回的光标等于0时,表示整个scan遍历结束了,第二个返回的是List,一个匹配的key的数组

import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101", 6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    final static int STR_MAX_LEN = 10 * 1024;
    final static int HASH_MAX_LEN = 500;

    @Test
    void testScan() {
        int maxLen = 0;
        long len = 0;

        String cursor = "0";
        do {
            // 扫描并获取一部分key
            ScanResult<String> result = jedis.scan(cursor);
            // 记录cursor
            cursor = result.getCursor();
            List<String> list = result.getResult();
            if (list == null || list.isEmpty()) {
                break;
            }
            // 遍历
            for (String key : list) {
                // 判断key的类型
                String type = jedis.type(key);
                switch (type) {
                    case "string":
                        len = jedis.strlen(key);
                        maxLen = STR_MAX_LEN;
                        break;
                    case "hash":
                        len = jedis.hlen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "list":
                        len = jedis.llen(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "set":
                        len = jedis.scard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    case "zset":
                        len = jedis.zcard(key);
                        maxLen = HASH_MAX_LEN;
                        break;
                    default:
                        break;
                }
                if (len >= maxLen) {
                    System.out.printf("Found big key : %s, type: %s, length or size: %d %n", key, type, len);
                }
            }
        } while (!cursor.equals("0"));
    }
    
    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }

}
③第三方工具
  • 利用第三方工具,如 Redis-Rdb-Tools 分析RDB快照文件,全面分析内存使用情况
  • https://github.com/sripathikrishnan/redis-rdb-tools
④网络监控
  • 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
  • 一般阿里云搭建的云服务器就有相关监控页面

1.2.3、如何删除BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。

  • redis 3.0 及以下版本
    • 如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey

  • Redis 4.0以后
    • Redis在4.0后提供了异步删除的命令:unlink

1.3、恰当的数据类型

例1:比如存储一个User对象,我们有三种存储方式:

①方式一:json字符串
user:1{“name”: “Jack”, “age”: 21}

优点:实现简单粗暴

缺点:数据耦合,不够灵活

②方式二:字段打散
user:1:nameJack
user:1:age21

优点:可以灵活访问对象任意字段

缺点:占用空间大、没办法做统一控制

③方式三:hash(推荐)
user:1namejack
age21

优点:底层使用ziplist,空间占用小,可以灵活访问对象的任意字段

缺点:代码相对复杂

例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?

keyfieldvalue
someKeyid:0value0
..........
id:999999value999999

存在的问题:

  • hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多
  • 可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题
方案一

拆分为string类型

keyvalue
id:0value0
..........
id:999999value999999

存在的问题:

  • string结构底层没有太多内存优化,内存占用较多

在这里插入图片描述

  • 想要批量获取这些数据比较麻烦
方案二

拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash

keyfieldvalue
key:0id:00value0
..........
id:99value99
key:1id:00value100
..........
id:99value199
....
key:9999id:00value999900
..........
id:99value999999

package com.heima.test;

import com.heima.jedis.util.JedisConnectionFactory;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanResult;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class JedisTest {
    private Jedis jedis;

    @BeforeEach
    void setUp() {
        // 1.建立连接
        // jedis = new Jedis("192.168.150.101", 6379);
        jedis = JedisConnectionFactory.getJedis();
        // 2.设置密码
        jedis.auth("123321");
        // 3.选择库
        jedis.select(0);
    }

    @Test
    void testSetBigKey() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 650; i++) {
            map.put("hello_" + i, "world!");
        }
        jedis.hmset("m2", map);
    }

    @Test
    void testBigHash() {
        Map<String, String> map = new HashMap<>();
        for (int i = 1; i <= 100000; i++) {
            map.put("key_" + i, "value_" + i);
        }
        jedis.hmset("test:big:hash", map);
    }

    @Test
    void testBigString() {
        for (int i = 1; i <= 100000; i++) {
            jedis.set("test:str:key_" + i, "value_" + i);
        }
    }

    @Test
    void testSmallHash() {
        int hashSize = 100;
        Map<String, String> map = new HashMap<>(hashSize);
        for (int i = 1; i <= 100000; i++) {
            int k = (i - 1) / hashSize;
            int v = i % hashSize;
            map.put("key_" + v, "value_" + v);
            if (v == 0) {
                jedis.hmset("test:small:hash_" + k, map);
            }
        }
    }

    @AfterEach
    void tearDown() {
        if (jedis != null) {
            jedis.close();
        }
    }
}

1.4、总结

  • Key的最佳实践
    • 固定格式:[业务名]:[数据名]:[id]
    • 足够简短:不超过44字节
    • 不包含特殊字符
  • Value的最佳实践:
    • 合理的拆分数据,拒绝BigKey
    • 选择合适数据结构
    • Hash结构的entry数量不要超过1000
    • 设置合理的超时时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/480523.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AIGC迈向通用人工智能时代

一、AIGC“起飞”的背后 2023年1月30日&#xff0c;AIGC概念股突飞猛涨。一时间&#xff0c;AIGC再次站上风口浪尖。 AIGC&#xff08;AI Generated Content&#xff09;是指利用人工智能技术来生成内容&#xff0c;被认为是继UGC、PGC之后的新型内容生产方式&#xff0c;常见…

哈希的应用 -- 布隆过滤器与海量数据处理

文章目录 布隆过滤器概念布隆过滤器设计思路布隆过滤器的应用布隆过滤器模拟实现布隆过滤器的基本框架布隆过滤器的插入布隆过滤器的探测布隆过滤器的删除 布隆过滤器优点布隆过滤器缺陷布隆过滤器模拟实现代码及测试代码海量数据处理哈希切割哈希切分 布隆过滤器概念 布隆过滤…

【机器学习】HOG+SVM实现行人检测

文章目录 一、准备工作1. 下载数据集2. 解压数据集 二、HOG特征简介1. 梯度&#xff08;Gradient&#xff09;2. 格子&#xff08;Cell&#xff09;3. 块归一化&#xff08;Block Normalization&#xff09;4. HOG特征&#xff08;HOG Feature&#xff09;5. 使用skimage.featu…

“五一”假期消防安全知识要牢记之消防安全知识答题活动

“五一”期间&#xff0c;容易出现哪些安全隐患&#xff0c;生产生活中要注意哪些安全事项&#xff0c;一起来看&#xff01; 森林防火&#xff1a; 1.禁止将火柴、汽油等易燃物带入山林&#xff0c;禁止乱扔火种。 2.景区管理单位要加强防火巡逻&#xff0c;禁止野外火源&am…

smbms项目搭建

目录 1.搭建一个maven web项目 2.配置Tomcat 3.测试项目是否能够跑起来 4.导入项目中会遇到的Jar包 5.项目结构搭建 6.项目实体类搭建 7.编写基础公共类 1.数据库配置文件 2.编写数据库的公共类 3.编写字符编码过滤器 3.1web配置注册 4.导入静态资源 1.搭建一个maven web项目 …

C++前置声明的理解

知识补充 在C/C中引入一个头文件时&#xff0c;在编译器预处理的时候会将引入头文件的地方简单替换成头文件的内容。这样做的后果是很容易引起头文件的重复引用。所以我们在编写头文件是一般有以下规定来防止头文件被重复包含。 MyWidget.h #ifndef MyWidget_H_ #define MyWi…

实验四、彩色图像处理

实验目的 使用MatLab软件对图像进行彩色处理&#xff0c;熟悉使用MatLab软件进行图像彩色处理的有关方法&#xff0c;并体会到图像彩色处理技术以及对图像处理的效果。 作业1&#xff1a;生成一副256*256的RGB图像&#xff0c;使得该图像左上角为黄色或者青色&#xff0c;左下…

day04_基本数据类型丶变量丶类型转换

前置知识 计算机世界中只有二进制。那么在计算机中存储和运算的所有数据都要转为二进制。包括数字、字符、图片、声音、视频等。 进制 进制也就是进位计数制&#xff0c;是人为定义的带进位的计数方法 。不同的进制可以按照一定的规则进行转换。 进制的分类 十进制&#x…

Seurat -- Perform linear dimensional reduction

brief 什么是线性降维&#xff1f; 这里是一个很形象的网页演示&#xff0c;其中包括了一个视频链接。 这里是如何用R 包psych做线性降维的演示&#xff0c;其中也有原理的简述。 为什么要做线性降维&#xff1f; 因为下一步的聚类分析需要这里的降维结果作为输入。降维做的好…

14-3-进程间通信-消息队列

前面提到的管道pipe和fifo是半双工的&#xff0c;在某些场景不能发挥作用&#xff1b; 接下来描述的是消息队列&#xff08;一种全双工的通信方式&#xff09;&#xff1b; 比如消息队列可以实现两个进程互发消息&#xff08;不像管道&#xff0c;只能1个进程发消息&#xff…

vulnhub靶机Misdirection

环境准备 下载链接&#xff1a;https://download.vulnhub.com/misdirection/Misdirection.zip 解压后双击ovf文件导入虚拟机 网络&#xff1a;DHCP、NAT、192.168.100.0/24网段 信息收集 主机发现 192.168.100.133是新增的ip 端口扫描 发现开放了以上端口&#xff0c;继续…

【Java笔试强训 28】

&#x1f389;&#x1f389;&#x1f389;点进来你就是我的人了博主主页&#xff1a;&#x1f648;&#x1f648;&#x1f648;戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔&#x1f93a;&#x1f93a;&#x1f93a; 目录 一、选择题 二、编程题 &#x1f525;猴子分桃…

【Python入门】Python搭建编程环境-安装Python3解释器(内含Windows版本、MacOS版本、Linux版本)

前言 &#x1f4d5;作者简介&#xff1a;热爱跑步的恒川&#xff0c;致力于C/C、Java、Python等多编程语言&#xff0c;热爱跑步&#xff0c;喜爱音乐的一位博主。 &#x1f4d7;本文收录于Python零基础入门系列&#xff0c;本专栏主要内容为Python基础语法、判断、循环语句、函…

与其焦虑被 AI 取代或猜测前端是否已死, 不如看看 vertical-align 扎实你的基础!!!

与其焦虑被 AI 取代或猜测前端是否已死, 不如看看 vertical-align 扎实你的基础!!! vertical-align 设置 display 值为 inline, inline-block 和 table-cell 的元素竖直对齐方式. 从 line-height: normal 究竟是多高说起 我们先来看一段代码, 分析一下为什么第二行的行高, 也就…

D. Mysterious Crime(单个位置贡献)

Problem - D - Codeforces Acingel是一个小镇。这里只有一位医生——Miss Ada。她非常友善&#xff0c;没有人曾经对她说过坏话&#xff0c;所以谁能想到Ada会在她的房子里被发现死亡&#xff1f;世界著名侦探Gawry先生被任命查找罪犯。他询问Ada的邻居关于那个不幸的日子里拜访…

Java回收垃圾的基本过程与常用算法

目录 一、基本概述 二、垃圾分类 基本背景 举例说明各种引用类型的作用 强引用&#xff08;Strong Reference&#xff09; 软引用&#xff08;Soft Reference&#xff09; 弱引用&#xff08;Weak Reference&#xff09; 虚引用&#xff08;Phantom Reference&#xff…

广搜的优化技巧(备赛中)

A.电路维修 这道题我们对于每一个点都有四个方向&#xff0c;分别为 char op[]{"\\/\\/"}; 如果我们当前点到下一个点的方向不是对应的方向时我们的distance就加1&#xff0c;因为我们要求最优距离&#xff0c;所以我们采取一个小贪心的法则&#xff0c;每一次我们将…

「神州数码DCN」SAVI在IPV6环境下的应用

前言 介绍 ISIS&#xff0c;中间系统到中间系统的网络协议&#xff0c;最初是OSI组织为了他的CLNP&#xff08;类似于TCP/IP中的IP网络&#xff09;而设计的动态路由协议&#xff0c;后IETF对其进行修改和填充&#xff0c;现可以在TCP/IP和OSI环境中使用&#xff0c;称为&…

JavaWeb学习------jQuery

JavaWeb学习------jQuery jQuery函数库下载 jQuery函数库下载官网&#xff1a;Download jQuery | jQuery配套资料&#xff0c;免费下载 链接&#xff1a;https://pan.baidu.com/s/1aXBfItEYG4uM53u6PUEMTg 提取码&#xff1a;6c9i 然后下载&#xff1f; 来到官网&#xf…

Spark 1:Spark基础入门

Spark是什么 定义&#xff1a;Apache Spark是用于大规模数据&#xff08;large-scala data&#xff09;处理的统一&#xff08;unified&#xff09;分析引擎。 Spark 借鉴了 MapReduce 思想发展而来&#xff0c;保留了其分布式并行计算的优点并改进了其明显的缺陷。让中间数据存…