Elasticsearch --- DSL、RestClient查询文档、搜索结果处理

news2025/1/12 13:31:41

一、DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

 

1.1、DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query

    • multi_match_query

  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids

    • range

    • term

  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance

    • geo_bounding_box

  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool

    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all

  • 没有查询条件

// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

 

1.2、全文检索查询

使用场景


全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条

  • 根据词条去倒排索引库中匹配,得到文档id

  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索

  • 百度输入框搜索

例如京东:

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。  


基本语法


常见的全文检索查询包括:

  • match查询:单字段查询

  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}

示例


match查询示例:

multi_match查询示例:

可以看到,两种查询结果是一样的,为什么?.

 

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

 

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。


总结

match和multi_match的区别是什么?

  • match:根据一个字段查询

  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

 

1.3、精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询

  • range:根据值的范围查询

term查询


因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

 

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:


range查询


范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

 

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

示例:


总结


精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段

  • range查询:根据数值范围查询,可以是数值、日期的范围

 

1.4、地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.7] | Elastic

常见的使用场景包括:

  • 携程:搜索我附近的酒店

  • 滴滴:搜索我附近的出租车

  • 微信:搜索我附近的人

附近的酒店:

附近的车:

矩形范围查询


矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

 

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

 

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

附近查询


附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

 

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

 

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例: 

我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。

 

然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。  

   

1.5、复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名

  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

 

1.5.1、相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 "虹桥如家",结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法

  • BM25算法,elasticsearch5.1版本后采用的算法

   

1.5.2、算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

语法说明


 function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)

  • 过滤条件:filter部分,符合该条件的文档才会重新算分

  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数

    • weight:函数结果是常量

    • field_value_factor:以文档中的某个字段值作为函数结果

    • random_score:以随机数作为函数结果

    • script_score:自定义算分函数算法

  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:

    • multiply:相乘

    • replace:用function score替换query score

    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)

  • 2)根据过滤条件,过滤文档

  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)

  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改

  • 算分函数:决定函数算分的算法

  • 运算模式:决定最终算分结果 


2)示例


需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化

  • 过滤条件:brand = "如家"

  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight

  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}

测试,在未添加算分函数时,如家得分如下:

添加了算分函数后,如家得分就提升了:


3)小结


function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分

  • 算分函数:如何计算function score

  • 加权方式:function score 与 query score如何运算

   

1.5.3、布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”

  • should:选择性匹配子查询,类似“或”

  • must_not:必须不匹配,不参与算分,类似“非”

  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分

  • 其它过滤条件,采用filter查询。不参与算分

语法示例


GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}

示例


需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中

  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中

  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中


小结


bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”

  • should:选择性匹配的条件,可以理解为“或”

  • must_not:必须不匹配的条件,不参与打分

  • filter:必须匹配的条件,不参与打分

 

 

二、搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

 

2.1、排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

普通字段排序


keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

 

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序


地理坐标排序


地理坐标排序略有不同。

语法说明

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点

  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少

  • 根据距离排序

 

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

 

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。

 

2.2、分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始

  • size:总共查询几个文档

类似于mysql中的 limit ?, ?

基本的分页


分页的基本语法如下:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

深度分页问题


现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

   

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

 

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

 

针对深度分页,ES提供了两种解决方案,官方文档:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。

  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。


小结


分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页

    • 缺点:深度分页问题,默认查询上限(from + size)是10000

    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索

  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)

    • 缺点:只能向后逐页查询,不支持随机翻页

    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页

  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)

    • 缺点:会有额外内存消耗,并且搜索结果是非实时的

    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

 

2.3、高亮

高亮原理


什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签

  • 2)页面给<em>标签编写CSS样式  


实现高亮


高亮的语法:

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。

  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮

  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例


总结


查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件

  • from和size:分页条件

  • sort:排序条件

  • highlight:高亮条件

示例:



 

 

三、RestClient查询文档

文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:

  • 1)准备Request对象

  • 2)准备请求参数

  • 3)发起请求

  • 4)解析响应

 

3.1、快速入门

我们以match_all查询为例

发起查询请求


代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名

  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等

    • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL

  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:

 

另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:

  


解析响应


响应结果的解析:

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果

    • total:总条数,其中的value是具体的总条数值

    • max_score:所有结果中得分最高的文档的相关性算分

    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象

      • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果

    • SearchHits#getTotalHits().value:获取总条数信息

    • SearchHits#getHits():获取SearchHit数组,也就是文档数组

      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据  


完整代码


完整代码如下:

@Test
void testMatchAll() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

小结


查询的基本步骤是:

  1. 创建SearchRequest对象

  2. 准备Request.source(),也就是DSL。

    ① QueryBuilders来构建查询条件

    ② 传入Request.source() 的 query() 方法

  3. 发送请求,得到结果

  4. 解析结果(参考JSON结果,从外到内,逐层解析)

 

3.2、match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

而结果解析代码则完全一致,可以抽取并共享。

完整代码如下:

@Test
void testMatch() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

 

3.3、精确查询

精确查询主要是两者:

  • term:词条精确匹配

  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

查询条件构造的API如下:

 

3.4、布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

完整代码如下:

@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.准备BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.2.添加term
    boolQuery.must(QueryBuilders.termQuery("city", "杭州"));
    // 2.3.添加range
    boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));

    request.source().query(boolQuery);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

 

3.5、排序、分页

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。

对应的API如下:

完整代码示例:  

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;

    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

 

3.6、高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。

  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

高亮请求构建


高亮请求的构建API如下:

上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码如下:

@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

高亮结果解析


高亮的结果与查询的文档结果默认是分离的,并不在一起。

因此解析高亮的代码需要额外处理:

代码解读:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象

  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值

  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField

  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了

  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/475185.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

他工作10年,老板却让他走人

大家好&#xff0c;我是五月&#xff0c;一个编程街溜子。 二狗被裁了&#xff0c;他在公司待了快十年&#xff0c;他想留下来&#xff0c;老板却让他走。 我和他一样困惑。 他985毕业&#xff0c;工作中有从0开始一个项目直到日活过千万&#xff0c;也有过参与顶级产品核心…

【数据结构】算法的时间复杂度和空间复杂度(含代码分析)

文章目录 一、算法的效率1.1 如何衡量一个算法的好坏1.2 算法的复杂度的概念 二、大O的渐进表示法三、时间复杂度2.1 时间复杂度的概念2.2常见时间复杂度计算举例 四、空间复杂度2.1 空间复杂度的概念2.2常见空间复杂度计算举例五、解决问题的思路LeetCode-exercise 总结 一、算…

【Java笔试强训 7】

&#x1f389;&#x1f389;&#x1f389;点进来你就是我的人了博主主页&#xff1a;&#x1f648;&#x1f648;&#x1f648;戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔&#x1f93a;&#x1f93a;&#x1f93a; 目录 一、选择题 二、编程题 &#x1f525;Fibona…

Android BuildConfig不生成的解决办法

为了验证一些问题新建了一个demo&#xff0c;其依赖的AGP版本是8.0.0 但是在运行过程中报了一个错误就是找不到BuildConfig。 重新build了下代码&#xff0c;然后找编译后的代码&#xff0c;发现确实没有生成BuildConfig. 给我整的直接怀疑人生&#xff0c;以为是自己的AS有问…

QT、事件处理机制

闹钟 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimer> //定时器 #include <QTime> //shijian #include <QTimerEvent> //定时器事件类 #include <QDateTime> //日期实间类 #include <QTextToSpeech> …

【C++】特殊类设计+单例模式+类型转换

目录 一、设计一个类&#xff0c;不能被拷贝 1、C98 2、C11 二、设计一个类&#xff0c;只能在堆上创建对象 1、将构造设为私有 2、将析构设为私有 三、设计一个类&#xff0c;只能在栈上创建对象 四、设计一个类&#xff0c;不能被继承 1、C98 2、C11 五、设计一个…

UNIX环境高级编程——进程控制

8.1 引言 本章介绍UNIX系统的进程控制&#xff0c;包括&#xff1a; 创建新进程、执行程序、进程终止进程属性ID——实际、有效、保存的用户ID和组ID解释器文件system函数进程会计机制 8.2 进程标识 进程ID&#xff1a;一个非负整数&#xff0c;进程的唯一标识。 进程ID可…

【群智能算法】一种改进的蜣螂优化算法IDBO[2]【Matlab代码#18】

文章目录 1. 原始DBO算法2. 改进后的IDBO算法2.1 Bernoulli混沌映射种群初始化2.2 自适应因子2.3 Levy飞行策略2.4 动态权重系数 3. 部分代码展示4. 效果图展示5. 资源获取 1. 原始DBO算法 详细介绍此处略&#xff0c;可参考DBO算法介绍 2. 改进后的IDBO算法 2.1 Bernoulli混…

【Linux问题合集002】解决虚拟机里面的Linux系统部分无法上网情况,保姆级教程

&#x1f340;一、前言 正如标题所说&#xff0c;解决虚拟机里面的Linux系统部分无法上网情况&#xff0c;这个网络问题的原因有很多种可能&#xff0c;这篇博客不一定能够解决所有朋友的网络问题&#xff0c;但是如果遇到和我一样情况的&#xff0c;我保证解决步骤一定是非常详…

使用 Python 创建端到端聊天机器人

使用 Python 创建端到端聊天机器人 1. 效果图2. 原理2.1 什么是端到端聊天机器人&#xff1f;2.2 创建端到端聊天机器人步骤 3. 源码3.1 streamlit安装3.2 源码 参考 聊天机器人是一种计算机程序&#xff0c;它了解您的查询意图以使用解决方案进行回答。聊天机器人是业内最受欢…

《LKD3粗读笔记》(11)定时器和时间管理

文章目录 1、内核中的时间概念2、 节拍率&#xff1a;HZ3、jiffies4、硬时钟和定时器5、时钟中断处理程序6、实际时间7、定时器8、延迟执行 1、内核中的时间概念 硬件为内核提供了一个系统定时器用以计算流逝的时间&#xff0c;该时钟在内核中可看成是一个电子时间资源&#x…

Nginx安装删除JDK Tomcat Redis

1.卸载Nginx ps -ef|grep nginx 查询Nginx 进程pid 如上图 master是主进程, worker是工作进程, master负责维护worker进程 Nginx启动后默认启动master进程和worker进程 Nginx默认使用端口80 kill -9 7035 或者 kill -term 7035 kill -9 7036 查找根下所有名字包…

带你搞懂人工智能、机器学习和深度学习!

不少高校的小伙伴找我聊入门人工智能该怎么起步&#xff0c;如何快速入门&#xff0c;多长时间能成长为中高级工程师&#xff08;聊下来感觉大多数学生党就是焦虑&#xff0c;毕业即失业&#xff0c;尤其现在就业环境这么差&#xff09;&#xff0c;但聊到最后&#xff0c;很多…

07 Kubernetes 网络与服务管理

课件 Kubernetes Service是一个抽象层&#xff0c;用于定义一组Pod的访问方式和访问策略&#xff0c;其作用是将一组Pod封装成一个服务&#xff0c;提供一个稳定的虚拟IP地址和端口号&#xff0c;以便于其他应用程序或服务进行访问。 以下是Kubernetes Service YAML配置文件的…

FPGA时序约束(五)衍生时钟约束与I/O接口约束

系列文章目录 FPGA时序约束&#xff08;一&#xff09;基本概念入门及简单语法 FPGA时序约束&#xff08;二&#xff09;利用Quartus18对Altera进行时序约束 FPGA时序约束&#xff08;三&#xff09;时序约束基本路径的深入分析 FPGA时序约束&#xff08;四&#xff09;主时…

2023五一建模A题完整版本【原创首发】

已经完成五一数学建模全部内容&#xff0c;大家可以文末查看&#xff01;&#xff01;供参考使用&#xff01; 摘要 本文研究了喷气式无人机在执行空中物资投放和爆破任务过程中的数学建模问题。我们分析了无人机投放距离与飞行高度、飞行速度、空气阻力等因素之间的关系&…

【Mybatis源码分析】动态标签的底层原理,DynamicSqlSource源码分析

DynamicSqlSource 源码分析 一、DynamicSqlSource 源码分析&#x1f62f;DynamicContext源码分析&#x1f644;SqlNode源码分析&#xff08;动态SQL标签&#xff09;Mybatis 动态SQL标签举例、调试SqlNode源码分析MixedSqlNodeIfSqlNodeWhereSqlNode、SetSqlNode、TrimSqlNodeS…

区域医疗云his系统源码,具有可扩展、易共享、易协同的优势

云HIS系统采用SaaS软件应用服务模式&#xff0c;提供软件应用服务多租户机制&#xff0c;实现一中心部署多机构使用。相对传统HIS单机构应用模式&#xff0c;它可灵活应对区域医疗、医疗集团、医联体、连锁诊所、单体医院等应用场景&#xff0c;并提升区域内应用的标准化与规范…

安装配置goaccess实现可视化并实时监控nginx的访问日志

一、业务需求 我们安装了nginx后,需要对nginx的访问情况进行监控(希望能够实时查看到访问nginx的情况),如下图所示: 二、goaccess的安装配置步骤 2.1、准备内容 需要先安装配置nginx或OpenResty - 安装 Linux环境对Nginx开源版源码下载、编译、安装、开机自启https://b…

从0开始利用Jenkins构建Maven项目(微服务)并自动发布

0. 前言 本文旨在帮助读者梳理如何从0开始利用Jenkins构建Maven项目&#xff08;微服务&#xff09;的自动发布任务 本文目录如下&#xff1a; 如何完成自动部署 0. 前言1. 配置工具类地址1.1 JDK1.2 Git1.3 Maven 2. 安装Jenkins3. 安装额外的工具插件4. 配置必要参数4.1 配…